TECHNISCHE
UNIVERSITAT
DRESDEN

Fakultat Informatik

F109-04-April 2009
Stefan Kopsell

Technische Berichte Karsten Loesing (Eds.)

Technical Reports

Institut fir Systemarchitektur
ISSN 1430-211X

Extended Abstracts of the Fourth Privacy
Enhancing Technologies Convention
(PET-CON 2009.1)

Technische Universitat Dresden
Fakultat Informatik

D-01062 Dresden

Germany

URL: http://www.inf.tu—dresden.de/

Preface

PET-CON, the Privacy Enhancing Technologies Convention, is a forum for researchers,
students, developers, and other interested people to discuss novel research, current
development and techniques in the area of Privacy Enhancing Technologies. PET-CON
was first conceived in June 2007 at the 7th International PET Symposium in Ottawa,
Canada. The idea was to set up a bi-annual convention in or nearby Germany to be
able to meet more often than only once a year at some major conference.

The First PET-CON took place on August 16, 2007 in Frankfurt (on the Main), Ger-
many. There were participants from four German universities. The Second PET-CON
was held on February 11, 2008 in Aachen, Germany. This was the first time that we ac-
cepted submissions, provided reviews, and published a booklet of Extended Abstracts.
The Third PET-CON took place on September 30, 2008 in Darmstadt, Germany. There
were no written submissions and no review process, but instead lively discussions of
work in progress at the convention. This Fourth PET-CON will be held on March 24—
25,2009 in Dresden, Germany. Apparently, we accepted written submissions this time.
Submitting a contribution was not mandatory for participating in PET-CON, and no
submissions were rejected. All submissions were gratefully revised by three anony-
mous reviewers each.

We would like to thank all authors for submitting an Extended Abstract, all reviewers
for conducting their work on really short notice, and the TU Dresden for funding this
booklet of Extended Abstracts and for making the actual convention possible.

March 2009 Stefan Kopsell, Karsten Loesing
Editors

Reviewers

Lars Fischer

Lothar Fritsch, Norwegian Computing Center, Norway
Dominik Herrmann, University of Regensburg, Germany
Jens Kubieziel, Friedrich Schiller University of Jena, Germany
Karsten Loesing, The Tor Project

Nick Mathewson, The Tor Project

Sebastian Pape, University of Kassel, Germany

Andreas Pashalidis

Lexi Pimenidis, University of Siegen, Germany

Florian Scheuer, University of Regensburg, Germany

Organizers

Rainer Bohme, TU Dresden, Germany
Stefan Kopsell, TU Dresden, Germany

Contents

1 CHATMIX - Ein Chatsystem mit Fokus auf Senderanonymitat
Manuel Breu, Christoph Gerber, Tobias Islinger, Florian Scheuer

2 OnionCat - An Anonymous Internet Overlay, Application and Usage
Bernhard R. Fischer

3 On Relations between Anonymity and Unlinkability
Lars Fischer

4 Usages of Steganography for Protecting Privacy
Addm Mdté Foldes

5 Design of an Anonymous Instant Messaging Service
Gdbor Gyorgy Gulyds

6 Effectivity of Various Data Retention Schemes for Single-Hop Proxy Servers
Dominik Herrmann, Rolf Wendolsky

7 Anonymity Techniques — Usability Tests of Major Anonymity Networks
Jens Schomburg

8 Peer Profiling and Selection in the I2P Anonymous Network
zzz, Lars Schimmer

11

19

26

34

41

49

59

CHATMIX - Ein Chatsystem mit Fokus auf
Senderanonymitat

Manuel Breu, Christoph Gerber, Tobias Islinger, Florian Scheuer

florian.scheuer@wiwi.uni-regensburg.de

{manuel.breu, christoph.gerber, tobias.islinger}@stud.uni-regensburg.de

Lehrstuhl Management der Informationssicherheit,
Universitdt Regensburg, Deutschland

Abstract

Dieses Arbeitspapier stellt ein auf Chaumschen Mixen basierendes Chatsystem
vor, das Benutzern die Moglichkeit eroffnet, anonym zu kommunizieren. Unser
System ist genau auf diesen Anwendungsfall zugeschnitten und verfiigt tiber ef-
fektive Mafsnahmen um Angriffe abzuwehren. Zum Einsatz kommen dabei u. a.
Dummytraffic, getaktete Ubertragungen und ein zweistufiges Verfahren zum Schutz
vor Replayangriffen.

1 Einfiihrung

Die voranschreitende Vernetzung von Menschen weltweit fiihrt dazu, dass ein im-
mer grofieres Angebot an Diensten im Internet zur Verfligung steht. Doch gerade
in sehr sensiblen Anwendungsszenarien ist dies nicht ohne weiteres moglich: Die
fehlende Anonymitit im Internet erschwert die Einrichtung von virtuellen anonymen
Selbsthilfegruppen oder Informantenportalen. Diese Szenarien konnten jedoch von
einer anonymen Kommunikation ohne physische Anwesenheit stark profitieren und
an Akzeptanz gewinnen. In diesem Arbeitspapier soll daher das Konzept eines anony-
men Chatsystems vorgestellt werden.

Mixe sind ein bewihrtes Mittel zur Realisierung praktikabler Anonymitét im Internet
(vgl. Tor! und JonDonym?). Das vorgestellte Chatsystem nutzt daher diese Technik
um die Nachrichten effektiv von der Identitat ihrer Absender zu trennen. Der Client
verbindet sich tiber eine Kaskade dedizierter Mixe zu einem Server, der erhaltene
Nachrichten broadcastet. Aus Nutzersicht handelt es sich dabei um einen normalen
Chat mit der klassischen 1 : n - Kommunikationsform.

Thttp:/ /tor.eff.org (vgl. [7]).
Zhttp:/ /www.,jondonym.de; vormals AN.ON bzw. JAP (vgl. [8]).

Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1), pp. 1-10, 2009

2 Manuel Breu, Christoph Gerber, Tobias Islinger, Florian Scheuer

Nach einer kurzen Betrachtung verwandter Arbeiten in Abschnitt 2 wird das An-
greifermodell in Abschnitt 3 formuliert. Kapitel 4 bildet mit der Beschreibung der
Architektur und des Protokolls den Kern dieses Arbeitspapiers. Im Detail werden die
eingesetzte Verschliisselung (Abschnitt 4.2), Ubertragungsmechansimen (Abschnitt 4.4)
und Sicherheitsfunktionalitdt (Abschnitte 4.3 und 4.5) dargestellt. Kapitel 5 beschreibt
anschliefiend eine prototypische Implementierung und mit einer Diskussion in Kapitel
6 schliefit diese Arbeit.

2 Verwandte Arbeiten

Es gibt mehrere Ansdtze zur Realisierung senderanonymer 1 : n - Kommunikation.
Immanuel Scholz hat 2007 die Implementierung eines Chatsystems vorgestellt, das
auf David Chaums Dining Cryptographers Protokoll basiert (vgl. [13, 6]). Diese Ar-
chitektur kommt mit einem einzigen, zentralen Server aus und arbeitet nach einem
Mehrparteienberechnungsprotokoll (vgl. Yao’s Millonairs Problem in [14]). Die Ver-
traulichkeit der Identitdt der sendenden Teilnehmer wird durch dieses System sehr
gut bewahrt. Jedoch ergibt sich bei dieser Konstellation ein Problem der Verfiigbarkeit,
sobald sich ein Teilnehmer nicht mehr an das vorgeschriebene Protokoll hélt.

Ferner ist es moglich unter Verwendung der Tor-Infrastruktur anonym zu kommu-
nizieren. Diese Architekturform geht ebenfalls auf David Chaum zurtick: Es werden
Mixe benutzt um die Identitidt der Teilnehmer zu schiitzen (vgl. [1, 5]).

CHATMIX soll sich durch seine sehr einfache Konfigurier- und Bedienbarkeit ausze-
ichnen: Im Gegensatz zu einigen anderen Systemen kann es praktisch ohne Konfigu-
rationsaufwand in Betrieb genommen werden.

3 Angreifermodell

Die Menge an iiber das System veroffentlichten Nachrichten steht naturgemafs in sur-
jektivem Verhiltnis zur Menge an Urhebern. Ziel eines Angreifers ist es nun, eine ein-
deutige Beziehung zwischen einer Nachricht und ihrem Urheber wiederherzustellen.

Externe Angreifer werden hier nicht weiter betrachtet, da jeder an dem offenen CHAT-
MIX-System teilnehmen und somit zum Insider werden kann. Angreifer konnen mehrere
Clients betreiben und versuchen, beliebige Nachrichten an das System abzusetzen. Zu-
dem konnen sie alle Leitungen iiberwachen und Traffic-Analysen durchfiihren. Sie
sind jedoch nicht in der Lage, kryptographische Verfahren zu brechen.

Die Betreiber der eingesetzten Mixe sowie des Servers werden als semi-vertrauenswiir-
dig ("honest-but-curious’, vgl. [2, 11]) angenommen: Sie greifen ausschliefslich passiv
an und halten sich ansonsten streng an das Protokoll. Zudem kooperieren niemals alle
Betreiber der Komponenten gleichzeitig.

CHATMIX - Ein Chatsystem mit Fokus auf Senderanonymitét 3

Client,

Server

|
|
|
|
[
v
=
x
3
A
\ 4

Mix-Kaskade

Figure 1: Die verteilten Komponenten des Chatsystems.

4 Architektur und Protokoll

4.1 Komponenten

Die Systemarchitektur besteht im wesentlichen aus drei Komponenten wie Abbildung
1 zeigt:

Server Der Server stellt die Klartexte der Nutzerbeitrdge zur Verfiigung. Er besitzt
ein asymmetrisches Schliisselpaar bestehend aus dem privaten Schliissel Secs und
dem offentlichen zertifizierten Schliissel Pubg.

Mixe Die Mixe verbergen die Kommunikationsbeziehungen zwischen Clients und
dem Server. Jeder Mix i (i€[l..m]) einer Kaskade verfiigt ebenfalls tiber ein asym-
metrisches und zertifiziertes Schliisselpaar (Sec;, Pub;) und besitzt zudem die Zerti-
tikate der benachbarten Mixe seiner Kaskade.

Clients n Clients verbinden sich iiber die Mix-Kaskade mit dem Server, um anonym
mit anderen Clients kommunizieren zu konnen. Sie besitzen keine eigenen Schliissel,
benotigen jedoch die Zertifkate der anderen Komponenten.

4.2 Nachrichtenaufbau und Verschliisselung

Die Nachrichten des CHATMIX sind nach dem von Mixen bekannten Zwiebelschalen-
prinzip aufgebaut, mit dem Unterschied, dass hybride Kryptographie zum Einsatz
kommt. Wiein [9, 12] dargestellt, performt symmetrische Kryptographie um Grofienord-
nungen besser, sie ldsst jedoch den Vorteil der einfachen Schliisselverteilung eines
asymmetrischen Systems vermissen. Daher kommt hier ein hybrides System zum
Einsatz: Alle Nachrichten werden mit einer symmetrischen Blockchiffre unter einem

4 Manuel Breu, Christoph Gerber, Tobias Islinger, Florian Scheuer

Token | Meta-Info Text Padding Ks Km |- K
verschlisselt mit Kg verschl. =]

]
™" mit Pubg
|
1

verschliisselt mit K,

verschl.
Ié mit Pub,,, _>{

l o] | verschl.
} verschliisselt mit K 1 }<_ mit Pub _>i

Figure 2: Aufbau eines Nachrichtenobjekts.

zufélligen Schliissel K verschliisselt. Dieser wird nun fiir den Empfanger mit dessen
offentlichen Schliissel Pub verschliisselt und der Nachricht beigefiigt.

Nachrichten selbst beinhalten, wie in Abbildung 2 dargestellt, neben dem eigentlichen
durch den Nutzer eingegebenen Text einige Meta-Informationen, ein Padding sowie
ein Sicherheitstoken. Die Meta-Informationen bestehen aus Kennungen fiir virtuelle
Chatrdume sowie ein optionales Pseudonym, unter dem die Botschaft verdffentlich
werden soll. Dies dient der Gruppierung von Nachrichten eines Themas sowie zur
Verbesserung der Kohdsion des Textes. Das Padding und das Token dienen der Er-
schwerung der Verkettung von Nachrichten bzw. dem Replayschutz und werden de-
tailliert in den Abschnitten 4.3 und 4.5 beschrieben.

4.3 Dummynachrichten und Padding

CHATMIX arbeitet getaktet. Nachrichten werden in vorgeschriebenen, diskreten Zeit-
intervallen At von Clients gesendet. Sollte ein Chatteilnehmer in einer Zeiteinheit
keine Nutzdaten generiert haben, erzeugt der Client eine sog. Dummynachricht (vgl.
[4]). Diese Nachricht tragt keinerlei Information mit semantischer Bedeutung in sich,
wird aber wie eine sinntragende Nachricht durch den Chatclient zum Versand aufbere-
itet und ist von einer solchen nicht unterscheidbar. Sie dient lediglich dazu, Traffic auf
der Datenleitung zu erzeugen, um einem potentiellen Angreifer, dem es moglich ist
die elektronischen Verkehrswege auszuforschen, eine Analyse der Daten zu erschw-
eren. Auf diese Weise werden Situationen vermieden, die zur Aufdeckung der Iden-
titat eines Clients fiihren konnte, der als einziger innerhalb eines Zeitintervalls At eine
Nachricht sendet. Dummynachrichten werden durch den Server auf Grund eines Re-
dundanzmerkmals, welches erst nach korrekter Entschliisselung durch alle beteiligten
Netzkomponenten lesbar wird, erkannt und ausgefiltert.

Zudem werden alle Nachrichten mit Hilfe eines Paddings auf die gleiche Lange ge-
bracht. Nachrichten die kiirzer als ein festgelegter Wert sind, werden vor der Ver-
schliisselung mit zufdlligen Bits aufgefiillt. Abgetrennt ist das Padding durch ein
Trennzeichen, damit die nicht informationstragenden Bestandteile der Nachricht auf
Serverseite wieder entfernt werden konnen.

CHATMIX - Ein Chatsystem mit Fokus auf Senderanonymitét 5

({Nachricht} Kg} Ky} K| '
{Kg}_PubgHK,}_Pub,HK,}_Pub,) i
|
|
|

({Nachricht}_Kg} K,
{Ks}_Pubgl{K,}_Pub,)

({Nachricht}_Kgl

|
|
|
|
|
|
l
{Ks}_Pubg) !

Nachricht

Nachricht

abholen hinterlegter Nachrichten

eines Zeitraums

i
I

I

I

I

hinterlegte Nachrichten |
I

I

I

I

I

I

|
|
|
Figure 3: Sequenzdiagramm der Nachrichtentiibertragung.

4.4 Kommunikation

Die Kommunikation iiber die Mix-Kaskade lduft nach dem {iblichen Prinzip ab: Jeder
Mix entschliisselt die erhaltenen Nachrichten einmal und sendet sie anschlieffend um-
sortiert an den ndchsten Mix in der Reihe weiter. An letzter Stelle steht der Server,
der die erhaltenen Nachrichten ein letztes Mal entschliisselt und nun informationstra-
gende Nachrichten von Dummynachrichten unterscheiden kann. Erstere werden nun
mit dem geheimen Schliissel des Servers Secg signiert und an den letzten Mix der
Kaskade zurtickgeschickt. Dieser leitet sie iiber die Kaskade zum ersten Mix weiter.
Dort werden die Klartextnachrichten zwischengespeichert und kdnnen von den Clients
in einem Polling-Verfahren abgeholt werden. Abbildung 3 fasst den Ablauf exemplar-
isch fur eine Kaskade aus zwei Mixen zusammen. ({Nachricht} _K;) bezeichnet eine
mit dem Schliissel K; verschliisselte Nachricht; ({ Nachricht} _K;| {K;} _Pub;) eine mit
K, verschliisselte Nachricht, die um den mit Pub; verschliisselten Schliissel K; ergdnzt
wurde.

Auch der erste Mix einer Kaskaden arbeitet getaktet: Er wartet das Zeitintervall At ab,
in dem jeder Client eine Nachricht zu schicken hat und leitet die inzwischen gesam-
melten Pakete an den nidchsten Mix weiter.

Der aufwéndigere Weg der Broadcastnachrichten tiiber die gesamte Kaskade stellt sicher,
dass dem Server und den Mixen jeweils nur der ndchste Kommnikationspartner in der
Kette bekannt sein muss. Ein Wechsel von Kaskaden ist somit wesentlich einfacher
moglich.

6 Manuel Breu, Christoph Gerber, Tobias Islinger, Florian Scheuer

4.5 Replayschutz

Bei einem Replayangriff wird von einem Angreifer ausgegangen, der die Kommunika-
tionsbeziehungen zwischen einzelnen Clients und dem ersten Mix einer Kaskade aus-
forschen und manipulieren kann. Es werden Datenpakete mitgeschnitten und hierbei
wird das gleiche Paket wiederholt in das System gespielt, in der Hoffung, dass gleiches
Eingabeverhalten gleiches Ausgabeverhalten hervorruft. Sollte das der Fall sein, kann
auf diese Weise eine Nachricht einem Sender zugeordnet werden.

Ein mogliches Angiffszenario, das auf Chaumsche Mixe abzielt, ist Folgendes: Ein An-
greifer, der die Leitung zwischen Sender und Mix abhért, schneidet ein Paket mit und
spielt es erneut ins System ein. Damit ein solcher Angriff erfolglos bleibt, besitzen Mixe
einen Speicher, in dem bereits bearbeitete Nachrichten vorgehalten werden (vgl. [10]).
Sollte sich eine Nachricht wiederholen, wird sie vom Mix einfach ignoriert und ggf.
werden weitere Mafinahmen getroffen. Mit dieser Methode lassen sich Replayangriffe
effektiv verhindern. Sie hat jedoch einen Nachteil: Bei langen Betriebszeiten miissten
grofie Nachrichtenspeicher vorgehalten werden. Selbst mit effizienten Speichermeth-
oden, wie der Verwendung von Hashwerten, wachsen die Datenmengen tiber die Zeit
stark an. Die Daten miissen so lange gespeichert werden, so lange das gleiche Schliis-
selpaar fiir die Netzkomponenten verwendet wird.

Eine mogliche Losung ist, die Schliissel bei jedem Start der Netzkomponenten zu
erzeugen. Dies macht es jedoch notwendig, Public Key Infrastrukturen zu implemen-
tieren, die eine Authentizitdt der weitergegebenen Public Keys gewéhrleisten.

Ein alternativer Ansatz ist eine von uns gewdéhlte Mischform aus Filtern und Daten-
speichern, um einerseits Replayangriffe zu verhindern und andererseits die vorzuhal-
tende Datenmenge zu reduzieren. Zentraler Gegenstand des Replay-Schutzes ist das
Sicherheitstoken, das vom Server erzeugt und an die Clients verteilt wird. Dabei han-
delt es sich um eine Zufallszahl, die so grof§ gew&hlt werden muss, dass Kollisionen
ein tolerierbares MafS erreichen miissen und zudem nicht erraten werden konnen. Der
Client verschliisselt in seiner Nachricht typischerweise ein giiltiges Token (vgl. auch
[3]), bevor er die Nachricht an den Server iibersendet. Serverseitig durchlduft diese
Nachricht nun eine Kombination aus Black- und Whitelistverfahren.

4.5.1 Blacklist

Auf Serverseite wird vor dem Entschliisseln von jeder eingehenden Nachricht ein
Hashwert gebildet und — sofern nicht bereits ein Eintrag fiir diesen Hashwert exisitert
—in einer Liste abgespeichert. Kommt es zu einer Kollision, wird angenommen, dass es
sich um eine wiedereingeschleuste Nachricht handelt und sie wird verworfen. Prinzip-
iell ist es somit denkbar, dass durch zufilllige Kollisionen Nachrichten falschlicher-
weise als Replay-Nachrichten identifizeirt werden. In diesem Fall merkt der betroffene
Benutzer, dass seine Nachricht nicht erscheint und kann sie erneut abschicken. Auf
Grund der zufélligen Wahl des Paddings und des symmetrischen Schliissels wird nun
mit sehr hoher Wahrscheinlichkeit eine verschliisselte Nachricht entstehen, welche
nach Anwendung der Hashfunktion eine andere Priifsumme als die erste, grundlos

CHATMIX - Ein Chatsystem mit Fokus auf Senderanonymitét 7

gefilterte Nachricht hat. Somit kann einer unwahrscheinlichen Kollisionserscheinung
durch vertretbare Benutzerinteraktion effektiv entgegengewirkt werden.

4.5.2 Whitelist

Die zweite Hiirde, die ein eingehendes Nachrichtenobjekt nehmen muss, ist eine White-
list mit Sicherheitstokens. Der Server erzeugt jedes Mal, wenn er Nachrichten iiber die
Mix-Kaskade zu den Clients leitet, eine neue Zufallszahl — das Sicherheitstoken. Dieses
wird von ihm zudem in eine Liste eingetragen. Bei der Erzeugung einer Nachricht
wird auf Seite der Clients das zuletzt erhaltene Token eingebunden. Nachdem der
Server nun eine Nachricht das letzte Mal entschliisselt hat, kann er tiberpriifen, ob der
Sender ein giiltiges Token beigefiigt hat und die Nachricht entsprechend akzeptieren
oder verwerfen.

4.5.3 Zusammenspiel

Die Starke dieser Filtermafinahme liegt nun in ihrer Kombination. Beide Filterlisten
sind als zyklische Listen gleicher Lange konzipiert. Eine vom Angreifer mitgeschnit-
tene und unmittelbar wiedereingespielte Nachricht wird am Blacklistfilter scheitern,
da der Hashwert der Replay-Nachricht bereits in ihr enthalten ist. Eine mitgeschnit-
tene Nachricht, welche zu einem deutlich spéteren Zeitpunkt wiedereingespielt wird,
wird vom Server zwar entschliisselt, scheitert jedoch daran, dass in der Whitelist kein
giiltiges Token fiir diese Nachricht hinterlegt ist. Diese Schutzfunktion beschrankt die
am Server vorzuhaltende Datenmenge.

5 Prototyp

Das CHATMIX-System ist prototypisch in Java mit einer Kaskade aus zwei Mixen im-
plementiert®’. Hierbei gruppieren sich die Komponenten Client, Mix und Server in
eigenstandige Teilanwendung. Diese besitzen eine Rerefenz auf eine gemeinsame Ker-
nanwendung. In dieser finden sich neben der Implementierung des Nachrichtenobjek-
tes auch alle kryptografischen Verfahren (AES, RSA), sowie ein fiir den Replayschutz
notwendiges Hashverfahren (SHA-1). Unter der Verwendung von Apache Axis2* und
des Spring-Frameworks’ ist CHATMIX als Webservice realisiert. Die Softwarearchitek-
tur ist im spring’cypischen6 vier-Schichten-Modell implementiert: DAO-Schicht, Ser-
vice, Controller und GUI (nur Client). Alle wesentlichen Bestandteile der Projekte sind
gegen Interfaces programmiert. Der Datentyp der Nutzdaten ist nicht auf String fest-
gelegt, sondern muss lediglich das Java-Interface Serializable implementieren. Somit ist
es auch denkbar, beispielsweise Dateien tiber das System zu versenden. Einstellungen

3h’ctp: / /www-sec.uni-regensburg.de/chatmix/

*Axis2: Next Generation Web Services. http://ws.apache.org/axis2/
*http:/ /www.springsource.org

Shttp:/ /static.springframework.org/docs/Spring-MVC-step-by-step /

8 Manuel Breu, Christoph Gerber, Tobias Islinger, Florian Scheuer

konnen in den jeweiligen Projekten via Konfigurationsdatei vorgenommen werden.
Eine von uns gewahlte Beispielkonfiguration sieht unter anderem folgende Werte vor:

e AES-Schliissellinge: 128 Bit
e RSA-Schliissellange: 1024 Bit
e Sendeintervall: 500 ms

e Nachrichtenldnge: 2702 Byte

Mit der gegebenen Konfiguration ergibt sich fiir jede der Systemkomponenten eine
Netzlast an eingehenden Nachrichten von ca. 19 MB pro Stunde pro Client. Jeder
Mix der Kaskade hat eine zusitzliche ausgehende Netzlast der selben Grofse. Dartiber
hinaus fallen bei allen Mixen und auf Ausgangsseite des Servers weitere Kosten fiir
den Transport der riicklaufenden Nutzdaten an.

Unter der Annahne, jeder Client sendet nur einmal in zehn Sekunden Nutzdaten (in
der Basiskonfiguration auf 500 Zeichen beschrankt), ergibt sich (ohne der Signaturen
im Riickkanal) bereits ein Overhead von ca. 53,5 kB pro gesendeten Klartextes’.

6 Diskussion

Sicherheit Die vorgestellte Architektur eines tiber Chaumsche Mixe realisierten Chat-
systems bietet guten Schutz gegen die in Abschnitt 3 beschriebenen Angreifer. Prob-
leme ergeben sich nur fiir folgende Szenarien:

Der erste denkbare Fall ist, dass eine Nachricht kein giiltiges Token enthélt. Das Pro-
tokoll ist so entwickelt, dass die Token immer mit Klartextnachrichten ausgeliefert wer-
den. Bei der Initialisierung des Systems schreibt der erste Client, der eine Nachricht
senden will eine Nachricht ohne Token. Da es fiir diese Nachricht keinen Whitelist-
Schutz geben kann, kann sie erneut wieder in das System eingespielt werden, sobald
der Hashwert der Nachricht von der Blacklist verschwunden ist. Es gibt hierbei in
unserer Anwendung kein klassisches Schutzmodell®.

Eine mogliche Mafinahme, die an dieser Stelle implementiert werden konnte, ist die
Tokenverteilung von der Verteilung der Klartextnachrichten zu trennen. Auch wire es
denkbar, dass die Serverkomponente damit beginnt, automatisch generierte Nachrichten
zu versenden, wenn (noch) kein Client Nachrichten schickt.

Die zweite Einschrankung, die an dieser Stelle gilt, ist, dass ein Angreifer der die
verschliisselten Client-Datenstrome belauschen kann und zugleich der Serverbetreiber
des Chatmix-Systems ist, prinzipiell die Moglichkeit hat Replayangriffe vorzunehmen,
da die Black- und Whitelistfilterung in seinem Schutzbereich vorgenommen wird. Solche
Versuche des unerlaubten Informationsgewinns, konnten durch die Betreiber der Mixe

719 reine Dummynachrichten und einmal ein Kommunikationsoverhead von 2.202 Bytes.
8Eine pragmatische Losung fiir dieses Problem ist, dass der erste Benutzer pseudonymlos alle Teil-
nehmer im Chat begriifit.

CHATMIX - Ein Chatsystem mit Fokus auf Senderanonymitét 9

erkannt werden, wenn sie ihrerseits Blacklisten vorhalten wiirden, um doppelte Nachrichten
zu filtern.

Es existiert ein weiteres Szenario, in dem der Replayschutz ausgehebelt werden kann.
Hierzu miisste der erste Mix aktiv in die Datenverteilung eingreifen und zusatzlich
mit dem Server kollaborieren. Es wire dann denkbar, dass er nur Nachrichten mit bes-
timmten Tokens gezielt an einen einzelnen Client weiterleitet, der iberwacht werden
soll. Im Server konnte dann an Hand der Tokens iiberpriift werden, welche Nachrichten
von diesem einen Client stammen.

Dies kann unterbunden werden, indem man die Whitelist- / Blacklistfunktionalitat auf
einen anderen Mix (z.B. den letzten einer Kaskade) auslagert. Der Server erzeugt
hier zwar weiterhin Sicherheitstokens und hangt sie an Plaintextnachrichten an. Da
Nachrichten auf ihrem Weg zum Client erst die Mixe passieren miissen, besitzt jeder
Mix stets Kenntnis tiber aktuelle Tokens. Diese werden nun anstelle fiir den Server
fiir den entsprechenden Mix verschliisselt. Dieser filtert dann vom Client kommende
Nachrichten nach oben erklartem Black- / Whitelist-Kriterium. Die Tokens entfernt er
anschlieffend aus den Nachrichten und leitet sie an den Server weiter. Dies ist bis-
lang in unserem System nicht realisiert. Grund dafiir ist ein unverhaltnisméafsig hoher
Implementierungsaufwand.

Performance Das System skaliert linear mit der Anzahl an Clients und ist daher
prinzipiell auch fiir groflere Nutzerzahlen geeignet. Allerdings wird durch das standige
Versenden von Dummytraffic ein enormer Overhead produziert, der ein Vielfaches
der Nutzdaten ausmacht (vgl. 5). Mogliche Optimierungen koénnen durch Varia-
tion von Nachrichtenldnge und Zeitintervall vorgenommen werden. Dabei sind aber
moglicherweise Einschrankungen hinsichtlich der Benutzbarkeit zu erwarten.

7 Zusammenfassung

Anonymitét ist teuer. Um eine vertretbare und verfiigbare Senderanonymitit fiir sym-
metrische 1 : n - Kommunikation realisieren zu kénnen, muss ein verhéaltnisméfSiig ho-
her Aufwand getrieben werden. Das Ziel, eine Trennung aus Sicht des Angreifers zwis-
chen einer Nachricht und ihrem Absender herzustellen, kann durch das vorgestellte
Chatsystem erreicht werden. Mit der beschriebenen Kombination aus Mixen und einem
Chatserver konnen Nutzer anonym Nachrichten austauschen. Die Verbindung eines
Clients zum ersten Mix (und damit zum Chatsystem) ist jedoch nach wie vor beobacht-
bar. Sollte also ein System dediziert beispielsweise fiir anonyme Alkoholiker oder Kri-
tiker eines Regimes seinen Dienst versehen, so kann natiirlich allein eine Kommunika-
tionsbeziehung zwischen Nutzer und Chatsystem sehr viel preisgeben. Daher sollte
der Dienst fiir eine Vielzahl unterschiedlicher Themen genutzt werden, damit jeder
Nutzer seine Beteiligung an sensiblen Themen bestreiten kann. Zudem ist es moglich,
dem System weitere Mixkaskaden hinzuzuftigen, um hier eine weitere Teilung des
Vertrauens zu erreichen und die Unbeobachtbarkeit zu verbessern.

10 Manuel Breu, Christoph Gerber, Tobias Islinger, Florian Scheuer

References

[1] Torchat. Messenger Application on Top of the Tor Network and its Location Hid-
den Services. URL http://code.google.com/p/torchat/.

[2] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara. Private Collaborative
Forecasting and Benchmarking. In WPES "04: Proceedings of the 2004 ACM work-
shop on Privacy in the electronic society, pages 103-114. ACM, New York, NY, USA,
2004. ISBN 1-58113-968-3.

[3] O. Berthold, H. Federrath, and S. Kopsell. Praktischer Schutz vor Flooding-
Angriffen beim Chaumschen Mixen. Kommunikationssicherheit im Zeichen des In-
ternet, pages 235-249, 2001.

[4] A.Beutelsbacher. Kryptologie. Eine Einfiihrung in die Wissenschaft vom Verschliisseln,
Verbergen, Verheimlichen. 8. aktualisierte Auflage. Vieweg Verlag, Wiesbaden, 2007.

[5] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 4(2), 1981.

[6] D. Chaum. The Dining Cryptographers Problem: Unconditional Sender and Re-
cipient Untraceability. Journal of Crytology, 1(1):65-75, 1988.

[7] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation
Onion Router. In Proceedings of the 13th USENIX Security Symposium, August 2004.

[8] H. Federrath. AN.ON - Privacy Protection on the Internet. ERCIM News, (49):
172-178, 2002.

[9] H. Federrath and A. Pfitzmann. Bausteine zur Realisierung mehrseitiger Sicher-
heit. In G. Miiller and A. Pfitzmann, editors, Mehrseitige Sicherheit in der Kommu-
nikationstechnik, pages 83-104. Addison-Wesley-Longman, 1997.

[10] S. Kopsell. Vergleich der Verfahren zur Verhinderung von Replay-Angriffen der
Anonymisierungsdienste AN.ON und Tor. In Sicherheit, pages 183-187, 2006.

[11] L. E. Olson, M. J. Rosulek, and M. Winslett. Harvesting Credentials in Trust Nego-
tiation as an Honest-but-curious Adversary. In WPES 07: Proceedings of the 2007

ACM workshop on Privacy in electronic society, pages 64-67. ACM, New York, NY,
USA, 2007. ISBN 978-1-59593-883-1.

[12] S. Risse. Benchmarking von Kryptoalgorithmen. Diplomarbeit, Universitdt Re-
gensburg, 2008.

[13] I. Scholz. Dining Cryptographers. The Protocol. 24th Chaos Communication
Congress, Berlin, 2007.

[14] A.Yao. Protocols for Secure Computations. In Proceedings of the twenty-third annual
IEEE Symposium on Foundations of Computer Science, pages 160-164. IEEE Com-
puter Society, 1982.

OnionCat — An Anonymous Internet Overlay
Application and Usage

Bernhard R. Fischer
St. Polten University of Applied Sciences
Matthias Corvinus-StrafSe 15, 3100 St. Polten, Austria
2048R/5C5FFD47 <bf@abenteuerland.at>

Abstract

OnionCat is an anonymous Internet overlay. It allows users to share any kind of IP-
based services with the advantage of anonymity. This greatly improves users’ privacy and
defeats surveillance.

IP-based sharing of services is exactly what the Internet does — web services, email, chat
rooms, and many more. But unlike the traditional Internet with OnionCat users’ locations
cannot be ascertained using their “IP-footprints” they leave within every logfile on the net.
OnionCat gains its anonymity by using anonymizing networks like Tor or I2P! as its trans-
port. It is available on various operating systems including Windows.

This paper explains how OnionCat works and gives instructions about its application
and usage. With a continuously growing community the OnionCat network could evolve
into a feature and information rich network like we know the standard Internet today.

1 Introduction

OnionCat [2] may be used in a wide range of different applications. It provides a kernel in-
terface, i.e. a network device, to which an IPv6 address is assigned. Thus it provides one
of the most compatible interfaces possible. Of course an IPv4 interface would be even more
compatible, but it does not fulfill the requirement for the most important development goal of
OnionCat.

OnionCat is based on anonymizing transport layers like Tor,? [8] thus it may be used by various
user groups for the same reasons as they use, for example, Tor. OnionCat is an extension of
anonymizers. It adds features but it also extends the group of different users and use cases.

The most important goal of OnionCat is to enable users to transport raw IP data across an
anonymizing network together with automatic IP address configuration. This has two consid-
erations.

1. It makes it easier to use.

2. It creates a single logical virtual network segment so that all users can share it. Thus they
are automatically connected virtually together.

The second item is achieved by every VPN, but different from any other VPN the OnionCat
network is an open network. Every user can take part without any restriction or limitation in

Thtt p: / / www. i 2p2. de/
2Currenﬂy it works just with Tor. Development of adapting to I2P is in progress.

Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1), pp. 11-18, 2009

12 Bernhard R. Fischer

respect to network addressing. A user can decide to change his address at any time® and he
can also leave the network again without leaving traceable footprints. Without further require-
ments one can use OnionCat to achieve the following use cases.

e Usage as an open anonymous network (This is described above).
e Usage as a real VPN for a privately set up closed user group.

Both are fitted to bypass surveillance or supervised networks of any kind.

In the following sections I will discuss the concept of OnionCat as well as the setup to act as a
client in the open anonymous network.

2 Behind the Scenes

OnionCat basically is a virtual private network (VPN) from a computer science point of view.
One of the most generic definitions is found in [4]: “A Virtual Private Network is a network of
virtual circuits for carrying private traffic.”. I will refine and explain these terms more specifi-
cally. Virtual circuits are connections between nodes. Those connections do not exist physically,
but virtually. TCP sessions, for example, could be seen as virtual circuits. While browsing the
web a connection between the local computer and the webserver seems to exist but this is just
a virtual connection. Of course those two are not connected physically, but still the connection
carries some information, as is the case for web pages.

What Kosiur ([4]) further says is that those circuits carry private traffic. This does not necessarily
mean that the traffic is always personal or secret to somebody. This might be the case but it is
not a must. In some cases those connections could carry both types of information and very
often it is only a matter of definition what is private and what is not.

Many VPNs share a similar concept, which is carrying traf-
tic of a specific type across a network of the same type.
In most cases VPN applications, like the Microsoft VPN, '
Cisco’s VPN and OpenVPN carry IP packets. Usually they Layer 4, Transport
achieve the same goal, which is to access some kind of “pri- Layer 3, Network '
vate” network. A prime example would be a company’s in- '
ternal network. It’s designed to work for people who have Layer 2, Data Link

Internet access. Obviously Internet is based on the Internet f
Protocol (IP). Thus follows that those types of VPNs carry IP
packets within IP packets. Expressed in a different way, IP
packets get encapsulated within IP packets. Figure 1 shows Figure 1: VPN intermediate
a simple diagram of how VPNss fit into the OSI layer model.* layer.

This model defines that each upper layer depends on its

lower layer and every network protocol can be assigned into a specific layer.’

Layers 4-7

Layer 1

The figure highlights three layers. Ethernet is contained within the data link layer. Usually we
carry IP within Ethernet, hence IP is one layer above and is called network layer. On top of IP
we have protocols such as, TCP and UDDP, and categorize them into layer 4 — the transport layer.

If a VPN is in use, IP is encapsulated into IP and not, for example, TCP into IP as the layer
model suggests. Thus, from an architectural view, it inserts a second IP layer. That is what

3This is the case only if the anonymizing transport allows this. But Tor does as well as I2P.

*The OSI model discriminates between seven different layers for classification of network protocols. It also
discriminates them based on their dependencies. A detailed explanation of the model can be found in [7].

°That is not entirely true because all models are simplified pictures of reality, but within this context that is not
of importance.

OnionCat — An Anonymous Internet Overlay, Application and Usage 13

Figure 1 depicts. Above layer two the VPN layer follows (which actually also is IP). On top of
that layer an IP layer follows.

If a VPN is implemented there is always some kind of VPN layer. The VPN layer creates the
virtual circuits. The difference between various VPNs is where they insert the VPN layer in
respect to the OSI model. Figure 1 gives just an example of encapsulating IP within IP.

2.1 OnionCat VPN

As already mentioned, OnionCat is a VPN. As has been previously explained, VPNs consist of
two fundamental parts. The virtual circuits and the traffic they carry. Both can be fitted into
the OSI model and both may not be of the same layer.

OnionCat does not create a completely new type of virtual circuit. It uses circuits which are
created by anonymizing networks upon request. For now OnionCat supports Tor. 12P is in
development.

Tor’s virtual circuits, which are relevant for OnionCat, exist only within the Tor network and
connect two Tor nodes. As it is the case for most virtual circuits, one end initiates the connection
and the other end accepts it. The latter usually is referred to as server. Within Tor nomenclature
this server is called hidden service. The circuits are based on TCP. As such they are above layer 4
in respect to the OSI model. Part of the nature of anonymizing networks calls for the capability
of two nodes (connected by a virtual circuit) to open up communication channels, but not know
who or where the other node is. After circuit setup Tor does not care about data carried within
it. It just manages that bytes piped into it at one end and drop out at the other end and vice
versa.

For all virtual circuits addressing is required to designate a
connection to a specific server. For TCP sessions, address-
ing is achieved by an IP address® and a port number. Tor
uses onion-URLs to address a specific hidden service. Onion- Layer 4, Transport
URLs are unique to a hidden service like IP addresses are
unique for servers within the Internet. Onion-URLs are hu-
man readable 80 bits of address information based on some Layer 2, Data Link
cryptography as described in [6].

Layers 4-7

Layer 3, Network

Layer 1

OnionCat requests Tor to build such virtual circuits and
sends raw IP data across. In this application the virtual cir- ‘ .
cuits carry IP data as it is true for most VPNs. Figure 2 shows Figure 2: OnionCat in layer
how OnionCat fits into the architecture of network protocols model.

as defined by the OSI model. In the upper right corner it

shows Tor’s virtual hidden service circuits. They are based on TCP, hence, they are located
above transport layer within the model. OnionCat (the cat’s paw) inserts the VPN layer, it’s
not just an insertion as it was shown in example Figure 1. OnionCat actually makes a bridge
from above the transport layer down to the network layer.

2.2 OnionCat Addressing

A typical configuration for most kinds of VPN is that they are setup in a static way. An exam-
ple of this would be how their virtual circuits are addressed. It is common for organizations to
run a centralized VPN entrance point to which all VPN participants connect. This setup is easy
and usually matches all requirements for such a private VPN. But it is not suitable for an open
anonymous network for several reasons.

6 Actually IP addresses are property of IP and not TCP but that makes no differnce within this context.

14 Bernhard R. Fischer

1. The person or organization that runs the entrance point probably will not stay anony-
mous. Even if they never appear in the public, such an entrance point might be revealed
due to the fact that it is a traffic sink.

2. A centralized service is always a single point of failure.

3. The service provider might enjoy unlimited trust of its users which obviously would
never be the case in todays world.

4. That kind of service could attract certain interest of various organizations like intelligence
services.

Hence, the approach is to distribute it. To connect a Tor client to a hidden service, an example
being establishing a virtual circuit within Tor, it is required to use Tor’s addressing method of
choice for hidden services. As explained above in Section 2.1, Tor uses onion-URLs which are 80
bit long addresses. If we assume that every client runs his own hidden service, then all of them
also get a unique hidden service address — an onion-URL. This leads to the interdependency
that every client can connect to every other client since every client now also is a uniquely
identifiable server.”

The difficulty now arises from layer discrepancy. OnionCat lies between Tor on one end and
the operating system on the other end. In respect to the layer model (see Figure 2) Tor (the
hidden service) operates above layer 4. The other end of the VPN layer which OnionCat cre-
ates is at layer 3, which is the IP layer. Every layer has its own addressing method. Hidden
services use the 80 bit long onion-URL and the IP layer obviously use IP addresses. A static
configuration, one example is a configuration file, would solve that problem but not in respect
to the requirement from above of not being static.

We looked for a complete dynamic solution which does automatically exclude some kind of
“configuration file update service”. The solution lies within the IPv6 protocol. IPv6 uses 128
bit long addresses. This is a huge address space and obviously greater than 80 bits. Because
OnionCat should act as a private network with public access, we chose a network prefix of the
unique local IPv6 unicast addresses according to [3]. It perfectly meets the requirements for Onion-
Cat. The smallest possible prefix length as defined in the standard document is 48 bits which
leaves another 80 bits for addressing hosts. Using this configuration, OnionCat can translate
IPv6 addresses to onion-URLSs and vice versa. If an IPv6 packet arrives from the operating sys-
tem OnionCat extracts the lowest 80 bits from the packet’s destination IPv6 address, translates
it into an onion-URL, and requests Tor to open a virtual circuit to the desired destination. After
the connection is setup OnionCat starts forwarding all packets through this virtual circuit. On
the other end of the virtual circuit, OnionCat receives the packets from Tor and forwards them
to the operating system. The operating system then in turn does with IP packets what it always
does. From the operation system’s point of view, there is no difference if a packet arrived on
a physical Ethernet interface or from OnionCat’s virtual tunnel interface. More details about
OnionCat’s addressing and forwarding mechanism can be found in [1].

This method perfectly distributes the VPN entrance point. In this configuration every client is

an entrance point. Summarized for network users, all one needs to know about is the destina-
tion IP address.

"Specifically for Tor it is true that running a hidden service does not require it to be a transit node which elimi-
nates the headache of attracting huge amounts of traffic. This is of high importance for users with low bandwidth
Internet connectivity.

OnionCat — An Anonymous Internet Overlay, Application and Usage 15

3 Installation And Configuration

The default application for OnionCat is to create an anonymous VPN which is publicly acces-
sible. It enables users to take part in the anonymous network. Once being a participant one
could either use the network’s services or provide ones own services or both. A prerequisite is
to have a network address. The addressing method basically was discussed in 2.2. Thus, we
tirst need to install and configure the anonymizer and run a hidden service. The following ex-
planations refer to Tor as an anonymizing transport network, because OnionCat was originally
developed for Tor and it is known to run stable with it.

3.1 Install and Configure Tor

To install Tor there are basically two ways: install it with a package manager or compile and
install it from source. The first solution is probably the easiest way and usually suits most users’
requirements. To build from source gives a little bit more flexibility in fine tuning several build
options. Details on package installations and package mirrors should be looked up on the
operating system’s or distribution’s main sites.

For Windows and MacOS X you should follow the links on the download page of the Tor
project: http://www.torproject.org/easy-download.html.en. For both OSes Vidalia (www.vidalia-
project.org) is installed together with Tor. Vidalia is a configuration and control GUI for Tor
which is also available for Linux.

After successful installation we need to add a hidden service. This is done by either editing the
Tor configuration file torrc, or by adding it with Vidalia. The latter results in Vidalia editing
the configuration file of Tor. The configuration file is usually located in /etc/tor/torrc or /ust/lo-
calletc/tor/torrc. On Windows it is located in C:\Documents and Settings\ <user>\Vidalia\torrc
Add the following two lines to the configuration file:

H ddenServiceDir /var/lib/tor/hidden_servicel
H ddenServi cePort 8060 127.0.0.1: 8060

On Windows the full path may be omitted. The directory will be created in C:\Documents and
Settings\<user>. The Hi ddenSer vi ceDi r directive specifies the directory where to locate
the private key for the hidden service. Hi ddenSer vi cePort specifies that all TCP connec-
tions, which are dedicated to virtual destination port 8060 from within Tor, are forwarded to
the local host (127.0.0.1) on TCP port 8060. This is the port that OnionCat listens to by default.
The port numbers should not be changed unless you know exactly what you're doing.

Now start Tor but, make sure that the system clock is correct beforehand. Tor will then create
a directory at the location specified by Hi ddenSer vi ceDi r, as well as put two files into it:
private_key and hostname. The first one contains the private key associated with the local
hidden service. If running a service for other users, a web service for example, it is a good idea
to backup this key to a safe place. It is with this key that a specific hidden service is uniquely
identified. If the machine crashes and all data is lost, the hidden service can be recovered by
copying the backed up key to the hidden service directory on the new machine.

The file hostname contains the hostname which is used by the Tor network to lookup and
connect to this hidden service. It is the onion-URL. Look into the file. It contains a string
like a5ccbdkubbr2jlcp.onion. Vidalia will display the hostname in “Provided Hidden Services”
field in the “Services” settings window. You will need this hostname for OnionCat setup as
explained below. Have a look at the log file to see if Tor is working. If using Vidalia, then just
click on “Message Log”.

16 Bernhard R. Fischer

If Tor works correctly it will say “Tor has successfully opened a circuit. Looks like client func-
tionality is working.”. Note that Tor may need some time (a few minutes) to boot.

3.2 Installing OnionCat

Now, after successful installation of Tor, we can run OnionCat. As long as there are no pack-
ages® OnionCat must be built from source. The steps are

1. Prepare build environment.
2. Build and install OnionCat.

3. Configure and test OnionCat.

On Unix-like OSes step 1 is not very difficult and it is most likely to be already setup. All that
OnionCat needs is a C compiler, usually GNU gcc and the GNU make utility. On Windows we
also need those two programs. Before this can be done, it is necessary to create a POSIX-like
environment. This is done with Cygwin (www.cygwin.com). Using Cygwin is more difficult,
hence, I will explain it in a separate Section 3.3. If you are going to install OnionCat on Windows
read Section 3.3 before.

Download an OnionCat source tarball from www.cypherpunk.at/ocat/download/. Untar it.
Change to the directory and configure it as described on that page. Now you should be able to
run OnionCat by typing ocat.

3.3 Installing Cygwin on Windows

To run OnionCat on Windows create a POSIX-like environment. Go to www.cygwin.com and
download and run the Cygwin installer. It will ask some questions, but click continue until
you reach the package selection menu and select “gcc: C-Compiler” and “make: GNU 'make’
utility”. Both are found in the “devel” section of the package selection window. Continue with
the installation process until finished.

OnionCat is IPv6-based but Cygwin unfortunately does not support IPv6 at the current stage
of development. But luckily there is an IPv6 patch available at win6.jp/Cygwin/ [9] by Jun-ya
Kato. Download and install it as described on that page.

The next step is to install the TAP driver. This is a virtual network interface, usually called a
tunnel device. This is the virtual layer 3 interface for Windows. Go to www.openvpn.org and
download the OpenVPN Windows installer. To run OnionCat, OpenVPN itself is not necessary
but the installer contains the TAP driver which was developed by the OpenVPN project. It is
licensed under GPL version 2 with some additions. After downloading, execute the installer.
It will display an options menu where you can un-select everything except the TAP driver.
Continue with installation.

After successful installation click on the Cygwin icon on the desktop and continue reading at
Section 3.2.

3.4 Configuring OnionCat

To configure OnionCat for its primary intention as client for the open anonymous network,
we need the onion-URL which is located in the hostname file in the hidden service’s directory

The package building process can be very time consuming. There are already packages in preparation for
FreeBSD, OpenBSD, Debian and Ubuntu Linux and MacOS X.

OnionCat — An Anonymous Internet Overlay, Application and Usage 17

(see Section 3.1). When running OnionCat the first time you probably should run OnionCat in
foreground to make sure that everything works correctly.’

In the shell, run OnionCat as root with the command ocat -B <your_onion_url>. OnionCat
will produce some output. There might be errors like “select encountered error: "Interrupted
system call", restarting”. As long as this just happens during startup it can safely be ignored.
There might also be the warning “can’t get information for user "tor": "user not found", defaulting
to uid 65534” which can also be ignored.

Now check if everything is configured correctly. Issue the command ifconfig. It lists several
stanzas. There should be a stanza for every registered network device. One should read tunO
and have an IPv6 address assign. If the tun0 stanza exists but has no IPv6 address assigned
OnionCat may have failed assigning the address. In some very rare cases this may happen for
a currently unknown reason. In that case assign the address manually. In order to do this, issue
the command ocat -i <your_onion_url>. It should return the IPv6 address associated with your
onion-URL. Now configure the address with ifconfig. Lookup the correct syntax of ifconfig in
the appropriate man page.

Now check the IPv6 routing table: netstat -nr6.1° It lists all entries of the kernel’s IPv6 routing
table and it should contain at least one entry: the OnionCat IPv6 prefix fd87:d87e:eb43::/48
pointing to the tunnel device. If there is no such entry, which could happen in some very rare
cases, add the route manually. Lookup the correct syntax in route man page.

4 Using The Global Anonymous Network

If everything is setup correctly as described in the previous Sections you should now be able
to use the OnionCat global anonymous network. First try to ping one of the existing hidden
OnionCat services. Currently there are a few services known to be permanently online.

e dot.aio!! (fd87:d87e:eb43:f683:64ac:73f9:61ac:9a00) is a web-based service registration
directory. It’s intended to let OnionCat service providers register their service in order to
be found by others. It’s not required for a service to be registered but it enhances usability
for new users. They can browse this page and lookup existing OnionCat services.

e irc.onion.aio (fd87:d87e:eb43:2243:5f84:5b12:7bb5:bbc?2) basically is a Internet Relay Chat
(IRC) server. IRC is based on the protocol definition of RFC1459 [5]. For a quick intro-
duction have a look at Wikipedia at en.wikipedia.org/wiki/Internet_Relay_Chat. There
is also a web-based audio stream (“OnionCat Radio”) available on port 1337 at this same
address and a new, web-based community plattform called “Whose Space?” .

e ping.onion.aio (fd87:d87e:eb43:f947:ad24:ec81:8abe:753e) currently does nothing than
just respond to echo requests.

e mail.onion.aio (fd87:d87e:eb43:744:208d:5408:63a4:ac4f) is a combined SMTP /POP3 ser-
ver. It accepts mails on port 25 for recipients of domain onion.aio (e.g. eagle@onion.aio
which is my email address). Users can fetch mail using the POP3 protocol on port 110.
Mailboxes need to be registered in advance. Unfortunately there is currently no auto-
matic registration service available. Post an email to onionmail@onion.aio on this server
in order to get an account. Note that this is completely anonymous as long as you don’t
send personal information across with your email.

° At the time of writing this document (March 8, 2009) OnionCat will fail on Windows if not run in the foreground.
"The digit ‘6’ might be omitted on some OSes.
""'The term “aio” refers to anonymous Internet overlay.

18 Bernhard R. Fischer

Try to ping one of those hosts by issuing the pingé command which is ping for IPv6. After
some time it will respond and list the round trip time (RTT) in the right most column. Be patient,
Tor may need up to one minute for the first time it connects to a hidden service. After the
connection is setup the RTT will be between 0.5 and 10 seconds. Currently there are many
efforts within the Tor project to improve connection setup time and RTT in respect to hidden
services.

If everything worked until now, you can start using the network as you do with Internet with
the sole exception that there is no DNS. It requires the use of plain IP addresses instead of
domain names. As long as there’s no feasible DNS solution, the host names can be regis-
tered locally. On all Unix-like OSes this is easily done by just putting IP address hostname
pairs into the file /etc/hosts. This is possible even on Windows. The file is usually located at
C:\WINDOWS\SYSTEM32\drivers\etc\hosts.

5 Conclusion

OnionCat is an add-on for anonymizing networks like Tor. It interfaces with the IP routing pro-
cess of the kernel and creates a VPN on top of anonymizing networks. Within this document I
promoted the primary development idea of OnionCat, described the basic concepts, and gave a
brief installation, configuration, and usage guide for OnionCat. Additionally there are already
some services available which were presented.

The OnionCat software is still in heavy development and may not work on every system with-
out further intervention, but we have managed to port it to major operating systems like Win-
dows XP and MacOS X.

One problem still not solved sufficiently is the DNS problem, specifically how to resolve host-
names to OnionCat IPv6 addresses. As a matter of course they could be stored within Internet
DNS but this most likely will leak information. With that in mind it is not a good idea. A feasi-
ble solution might be to setup a private DNS within OnionCat. That is basically no problem but
it would require a user to have some kind of Split-DNS service running locally. This scenario
would lead to additional installation effort.

References

[1] Bernhard R. Fischer. OnionCat - A Tor-based Anonymous VPN. In Proceedings of the 25th
Chaos Communication Congress. Chaos Computer Club, December 2008.

[2] Bernhard R. Fischer. OnionCat Project Site. http:/ /www.cypherpunk.at/onioncat/, 2009.

[3] R.Hinden and B. Haberman. Unique local IPv6 unicast addresses. RFC 4193, October 2005.

[4] Dave Kosiur. Virtual Private Networks. John Wiley & Sons, Inc., 1998.

[5] J. Oikarinen and D. Reed. RFC 1459: Internet Relay Chat Protocol, May 1993. Status:
EXPERIMENTAL.

[6] The Tor Project. Tor Rendezvous Specification. http://www.torproject.org/svn/-
trunk/doc/spec/rend-spec.txt, 2008.

[7] Andrew S. Tanenbaum. Computer Networks, Fourth Edition. Prentice Hall PTR, August 2002.
[8] The Tor Project. http:/ /www.torproject.org/.
[9] Jun ya Kato. Cygwin IPv6 Extension Patch. http://winé.jp/Cygwin/, 2008.

On Relations between Anonymity and
Unlinkability

Lars Fischer
inj4n@chaos—-darmstadt.de

March 18, 2009

Abstract

Anonymity and unlinkability are two distinct privacy problems. In this work
a formal construction is introduced that shows that anonymity formally is a sub-
problem of unlinkability. Anonymity is described as inability of an attacker to
choose the correct matching. Unlinkability is modelled as the inability to choose
the correct partition. In this paper it is shown that anonymity problems are sub-
problems of unlinkability. A formalisation allows to find a mapping between ano-
nymity and unlinkability.

1 Introduction

From an abstract point of view anonymity problems are sub-problems of unlink-
ability problems. This means that every anonymity problem can be modelled as
an restricted unlinkability problem with additional context information. This rela-
tion has already been mentioned in the known terminology by Pfitzmann/Hansen,
[PHO8] only in this paper this is formalised using context information classes from
[FMP07].

An unlinkability-attacker is not able to, or interested in, identification of sub-
jects. Its objective is to discover the equivalence relation on items of interest 101
that links IOI with equal (unidentified) subject/role. The question in anonymity is
who is the sender/receiver of this IOI. The question in unlinkability is which 10Is
are in the same equivalence class. In most examples, as in the PKI scenario used
herein, the equivalence class will be a same-sender relation. The graphs in Sec-
tion 2.3 and Section 3.1 will clarify this view on the relation between unlinkability
and anonymity.

The main difference between anonymity and unlinkability problems is, that
anonymity problems generally consider the linkability of actions and subjects, while
unlinkability problems consider only relations between actions. Anonymity is con-
cerned with matchings in bipartite graphs while unlinkability is concerned with
set partitions.

This paper is structured as follows in Section 2 anonymity problems are de-
fined. A definition of unlinkability problems is found in Section 3. In Section 4 a

Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1), pp. 19-25, 2009

20 Lars Fischer

mapping between anonymity and unlinkability is introduced. The paper is then
concluded in Section 5

2 Anonymity Problems

Anonymity is probably the most often used term in privacy related works. Al-
though anonymity is not equivalent to privacy but privacy is only possible if a
person is able to chose to be anonymous with regard to his actions. The graph
model in Section 2.3 provides a more formal view on anonymity that visualises the
connection between unlinkability and anonymity.

A unique identity of a subject, from the privacy viewpoint, is the most important
IOl as identities stand in m-to-n relation to subjects. Control of personal informa-
tion starts at the point where a subject is enabled to decide to not disclose its unique
identity.

Definition 1 (Anonymity)

“Anonymity of a subject from an attacker’s perspective means that the attacker
cannot sufficiently identify the subject within a set of subjects, the anonymity set.”
[PHOS]

From the viewpoint of an attacker, anonymity is the inability of the attacker
to distinguish between matchings of a bipartite graph, and know the matching
that corresponds to the real mapping between identification anchors and items
of interest. We put the emphasis in this definition on relation between IOI and
subjects, respectively identification anchors, which is the feature distinguishing
anonymity from unlinkability defined below.

2.1 Anonymity Metrics

The set of identification anchors that might be related to an IOI is commonly de-
noted anonymity set. This term has been introduced by Chaum in [Cha88]. The car-
dinality of an anonymity set provides the basic anonymity metric. The anonymity
set is probably the most often used estimation of anonymity. Size of anonymity
sets and advanced anonymity related metrics are summarised in [KRGBO8].

In [SD02] Serjantov and Danezis defined the anonymity problem as follows.
Given a set ¥ of subjects and roles R = {sender, receiver, none}. Let r € R be the
role of a user u € ¥ with respect to a IOl m € M. The objective of an anonymity-
attacker is to determine the role of u with respect to m.

2.2 Anonymity Scenarios

The classical problem given where a single item of interest, e. g.,an e-mail, is re-
lated to one subject from the anonymity set. The relation between the IOI and the
subjects is obscured to the attacker by the (anonymous) communication system.
The image depicts the objective of the attacker to correctly relate the single IOI to a
subject despite of the anonymity protection of the communication system. In gen-
eral a single IOI scenario is not very favourable for anonymity as it is very difficult
to hide the relation from the standard global passive adversary.

Given a scenario with multiple IOI and a set of subjects, the attacker’s objective
is to find a the real matching between subjects and 10I, which is obscured by the

On Relations between Anonymity and Unlinkability 21

(anonymous) communication system. (See [THO04] for a formal model of anonymi-
sation system, the PROB-Channel.) The number of IOI might exceed the number
of subjects, but not the other way round. Unless, that is, the set of subjects includes
subjects that are not communicating, i. e., related to any IOI. Generally we assume
that those subjects are not included in the scenario.

Consider for example a scenario where the mapping between IOIs “sent into
an anonymity preserving network”, and IOIs “leaving this network” are hidden
from the attacker. This is an anonymity problem insofar, as both sets are disjoint,
one could be interpreted as identification anchors, and the attacker seeks to find
the mapping. A similar interpretation exists with the mapping between disjoint
sets identification anchors. Receive and send are, though, not the only possible dis-
tinction classes, but probably the most common. For simplicity reasons we may
assume, that in these scenarios both sets have equal cardinality and a bijective
matching exists.

In other works, e. g., [Mal08] this type of scenarios has been denoted as unlinka-
bility problem. We refrain from this terminology here, because the main distinction
of anonymity problems herein is that they can be modelled as matching in bipartite
graphs. The reasons for this different terminology will become more clear in the
remainder of this chapter.

In the previous scenarios the choice which set defined the identification anchors
naturally was the set of subjects. In these two scenarios the choice is arbitrary as
long as it can be assumed that the chosen identification anchors are unique within
their subset.

2.3 PKI Graph Model

A horizontal linkability graph, describes anonymity in a PKI scenario with certifica-
tion authorities S, certificate using devices D, and messages M which are signed
using keys related to the certificates.

Gn = (Vh,&n, Pr) 1
V, = SUDUCUM @)
& C (SxD)U(DxC)U(Cx M) 3)
Pr ot En—[0,1]. @

gy, is a graph consisting of vertexes V,, edges &}, and a weighting function
P. G is, in this construction, a reduced 4-partite graph with edges only between
classes. The subset S x D of &, describes the relations between owners and devices.
Subsequently the edge subsets D x C' and C' x M denote the relations between
devices and certificates, as well as between certificates and devices.

An edge-weight P, of zero denotes that the edge’s endpoints are not related.
In that way P}, may be used to denote the belief of an onlooker that a certain edge
is part of the real graph. For example the world view of an attacker might be
expressed in that way.

Applying Definition 1 of anonymity to G;, one may observe that G, represents
three distinct layers of anonymity problems, anonymity with identity anchors IA
as subjects and IOI as devices, between IA as devices and IOI as certificates, as
well as between IA certificates and IOI messages. In Figure 1 an example graph is

22 Lars Fischer

U1 ma |

01 Co
V2 ms |

C3
02— s | G "]

Figure 1: Horizontal Linkability Graph

shown. Observing the picture it becomes intuitively clear that any other combina-
tion of a “left” and a “right” set as IA and IOI may be derived from the graph by
combination of edges (and weights) on shortest paths.

An anonymity problem thus is the correct mapping of IA to IOI. The hypotheses
space is the set of all matchings between the set of IA and the set of IOl Every layer
in Gj, defines an anonymity problem.

3 Unlinkability Problems

In the extremal case every subject may enjoy perfect anonymity, e. g., using a dif-
ferent pseudonym for every action or better, no identification at all. From the an-
onymity point of view this subject enjoys perfect privacy, but alas, it is not, for an
attacker might be able to relate different actions of a subject to each other. In an
unlinkability problem identification anchors are not distinguished from 10], i.e.,
all considered objects are IOI without special function.

Due to the lack of explicit identification anchors anonymity is an insufficient
description of these problems. The notion used to describe that an attacker can not
(correctly) relate 101 is unlinkability [PH08, SK03, FMP07].

Definition 2 (Unlinkability)

“Unlinkability of two or more items of interest (IOIs, e.g., subjects, actions, ...) from
an attacker’s perspective means that within the system (comprising these and pos-
sibly other items), the attacker cannot [...] distinguish whether these 1OIs are re-
lated or not.” [PH08]

We take the viewpoint of an attacker here, defining unlinkability as the inability
to find a clustering of a set of IOI that corresponds to a true relation between IOI.
Relations in this sense normally denote related with respect to sender equivalence, but
in general any (unknown) attribute of actions can be observed. The term sender
equivalence denotes that IOI are in the same equivalence class if they have been
originated by a subject under the same identification anchor.

Unlinkability describes problems where no set of identification anchors is known
and only IOI are concerned. The opposite of unlinkability is linkability, which is
also sometimes used in this work. Linkability describes the ability of an attacker to
correctly relate IOI to each other.

Global unlinkability problems can be formally defined as finding the correct
partition 7* from the set of all partitions II,; of a set of items of interest M.

On Relations between Anonymity and Unlinkability 23

3.1 PKI Graph Model

A vertical linkability graph in the PKI scenario, representing unlinkability problems,
is a collection of complete graphs as the equality relation modelled is transitive. A
vertical graph is constructed as follows

Gy = (Vu,&,Py) ®)
V, = SUDUCUM (6)
Ey C (SxSUDxD)U(CxC)U(M x M) (7)
P & —[0,1]. (8)

Each class of nodes in G, provides an individual unlinkability problem,e.g.,
(un-)linkability of devices with respect to equal subjects, unlinkability of messages
with respect to equal device, etc.

01 Co

(2] o] [e] [

Figure 2: Vertical Linkability Graph

4 Mapping Problems

These horizontal and vertical graphs provide an representation that clearly shows
the relation between anonymity and unlinkability. The connection between G;, and
G, is the node set which contains the same elements, i. e., subjects, devices, certifi-
cates, and messages. One may observe the duality between the edge sets of the
graphs. Given &, and P, corresponding &, and P, can be inferred. This observa-
tion leads to the conjecture that it must be possible to express anonymity problems
as special unlinkability problems.

Anonymity problems can be mapped onto unlinkability problems by using the
hint-class “breach of unlinkability” from [FMP07]. This class describes the situ-
ation where an unlinkability-attacker gets to know a set of elements that are in
different equivalence classes.

Given our known set of IOl M and an additional set of subject identifiers U
that contains identification anchors!. The disjoint union My := M U* U provides a
new set of items of interest. TWe denote I1,,(Hs) the set of set partitions of set M,
conditioned by the hint ;. The hint Hy denotes, that no two elements of the set
U are in the same cluster. The hypotheses space then is defined in [FMP07] by

Hy(Hy) :={m € Uy, : V{m,m'} CU = m », m'}.

1

assume the attacker stumbled upon a list of identifiers

24 Lars Fischer

Where m ~, m’ denotes that messages m, m’ are not in the same equivalence class
as defined by partition m of My and 11, denotes the set of set partitions of set M.

Knowing the subject identifiers U, we can further use the hint H;;; which de-
fines that the number of clusters is equal to |U|. This reflects the common global
anonymity scenario where all subject identifiers are known and each item of inter-
est has to be related to exactly one subject. This can be modelled along the lines
of the first class of hints in [FMP07]: “number of equivalence classes”. Combin-
ing both hints, we can compute a restricted unlinkability hypotheses space of set
partitions as

Iy (Hu, Hyy)) = {7 € Iy, : |7 = [U] and V{m,m'} CU = m o m'}. (9)

Where |7| denotes the number of clusters, i. e., subject equivalence classes, in a
set partition 7.

By construction we have shown that any anonymity problem can be mapped
onto an unlinkability problem. Obviously the other direction is not easily possible
because, as above construction shows, the set of hypotheses in anonymity is but a
subset of the unlinkability hypotheses set.

5 Conclusion

In this paper anonymity and unlinkability problems have been formalised as graphs.
Using unlinkability hint classes it could be shown by construction that anonymity
is a sub-problem of unlinkability.

Acknowledgements

This work has been notably improved by the comments from two of the anony-
mous reviewers.

References

[Cha88] David Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of Cryptology, 1(1):65-75,
January 1988.

[FMP07] Matthias Franz, Bernd Meyer und Andreas Pashalidis. Attacking Un-
linkability: The Importance of Context. In Proceedings of the Privacy En-
hancing Technologies 2007, 2007. correction needed.

[KRGBO08] Douglas J. Kelly, Richard A. Raines, Michael R. Grimaila und Rusty O.
Baldwin. A Survey of State-of-the-Art in Anonymity Metrics. In Pro-

ceedings of the 1st ACM workshop on Network Data Anonymization, Seiten
31-40, 2008.

[Mal08] Bradley Malin. k-Unlinkability: A privacy protection model for dis-
tributed data. Data Knowl. Eng., 64(1):294-311, 2008.

[PHO8] Andreas Pfitzmann und Marit Hansen. Anonymity, Unlinkability, Un-
observability, Pseudonymity, and Identity Managment - A Consoli-
dated Proposal for Terminology. Bericht v0.31, TU-Dresden, February
2008.

[SD02]

[SK03]

[THO4]

On Relations between Anonymity and Unlinkability 25

Andrei Serjantov und George Danezis. Towards an Information Theo-
retic Metric for Anonymity. In Workshop on Privacy Enhancing Technolo-
gies, LNCS 2482, April 2002.

Sandra Steinbrecher und Stefan Kopsell. Modelling Unlinkability. In
Roger Dingledine, Hrsg., Proceedings of Privacy Enhancing Technologies
Workshop, PET 2003, Dresden, Germany, March 26-28, Jgg. 2760 of LNCS,
Seiten 32-47. Springer, March 2003.

Gergely Téth und Zoltdn Horndk. Measuring Anonymity in a Non-
adaptive, Real-time System. In Proceedings of Privacy Enhancing Tech-
nologies workshop (PET 2004), Jgg. 3424 of Springer-Verlag, LNCS, Seiten
226-241, 2004.

Usages of Steganography for Protecting Privacy

Addm Maté Foldes
Dept. of Telecommunications,

Budapest University of Technology and Economics
fa606@hszk.bme.hu

Abstract

Steganography, the art of data hiding is a rapidly developing discipline. Many
kinds of data hiding algorithms exist, but concepts that incorporate them into a
framework are also needed for them to be useful. In this paper I analyse some
existing possibilities for the application of steganography in the domain of pro-
tection of privacy through covert storage of information. A novel software, the
‘stegodrive’ is also outlined. The goal of this concept is to show steganographic
capacity of a group of files as a contiguous, randomly accessible space — in other
words, a steganographic file system. This way the user may hide and retrieve arbi-
trary type of data, provided that it fits in the "expensive’ steganographic space. In
contrast to the stegodrive, the concept of most existing steganographic file system
implementations is to use free space of a filesystem as cover. This kind of storage
inherently carries the danger of accidental overwriting of data by the operating
system — the stegodrive is, however, based on already existing files, which means
that it is entirely the user’s responsibility to take care about the integrity of the
steganographic objects rather than that of the steganography-oblivious allocation
strategy of a file system driver.

1 Introduction to steganography

Steganography [PHO03] is the discipline of information hiding. Algorithms that belong
to this field hide data in a cover medium (e.g. an image), producing the stego medium.
The goal is that the latter does not differ greatly from the former — in other words, it
cannot be decided with certainty if information is hidden in a given medium. Good
steganographic algorithms use a stego key as a secret parameter, similarly to crypto-
graphic keys.

1.1 The level of protection provided by steganography
The aspects of information that can be protected are described as four levels in [Go00].
The first is the 'null” protection, i.e. when nothing is protected, e.g. an e-mail in plain-

text. The second level of protection targets the contents of the information — this is

Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1), pp. 26-33, 2009

Usages of Steganography for Protecting Privacy 27

where cryptography comes into play. The third level is the protection of metadata (e.g.
the sender of an e-mail). Privacy Enhancing Technologies (PETs) are meant to provide
such protection.

The fourth level is hiding the existence of information. This is the protection that
steganography can provide. The purpose of the use of steganography for protecting
privacy is to grant plausible deniability [MKO0O0] to the user, which means that an adver-
sary cannot prove or disprove a statement from the user that a given medium is an
‘empty” cover object. This way the user can repudiate having partaken in any covert
storage or transmission of information, making steganography inherently useful in the
tield of protection of privacy.

1.2 Classification of steganographic algorithms

There are several classifications of steganographic algorithms. Such a grouping is
useful for separating algorithms that were meant to fulfil different needs. Two such
classes! are simple data hiding and watermarks. The former aims to hide arbitrary data
in the cover, while the latter is used to mark the cover medium (i.e. they do not make
sense without it). While fragile watermarks are meant to suffer noticable damage when
the stego medium is transformed, robust watermarks are designed to survive transfor-
mations to such a degree that the cover becomes useless for its original purpose.

It can be seen that simple data hiding is the most suited for protecting the outlined
purpose, although a fragile watermark system can also be used to provide integrity
protection of the hidden information.?

1.3 Steganographic efficiency

Steganographic algorithms can be measured by several metrics[PH03] [Cv04]. Four of
them are the following;:

Capacity: The percentage of the cover medium that can be used to hide information.
In certain cases it is dependent on the content to be hidden.

Security: The undetectability of the hidden information. Note that in many cases it
is not important for an adversary to be able to read whatever was stored in the
cover — it is enough to prove that hidden information exists. The concept of the
security can be approached from many directions, most notably from those of
human sensory, probabilistic [CM03] and information-theoretic models [HLAO2].

Robustness: The durability of the hidden information against the transformation of
the stego medium. It is important mostly when evaluating a robust watermark
concept.

http:/ / qosip.tmit.bme.hu/twiki/pub/Main/InfoSzolgBizt/11-Adatrejtes_kepekben

2A simple checksum may also be enough in many situations, but watermarks may offer some ben-
efits. For instance, some watermarks can be used to tell with a given probability where the damage to
the stego medium took place.

28 Adam Maté Foldes

Complexity: The needs in memory and time to execute the algorithm.

1.4 Examples of simple data hiding algorithms

As it has already been stated, many algorithms for covert storage target images and
sound files. I hereby shortly describe some examples.

For uncompressed files the Least Significant Bit method is a common — but statistically
vulnerable — concept: the LSBs of the cover are replaced according to the information
to be hidden, bit by bit. For bitmap images this means altering the LSB for each colour
component of a pixel, while in a waveform the samples are shifted.

For a compressed file (which are more likely to appear on the average user’s hard drive
than uncompressed ones) the LSB concept cannot be used directly, since it is not known
in general if the lossy recompression will erase a certain bit. Instead, it may be a good
idea to alter the quantisation process of the lossy compression algorithm, as seen in
JSteg?® and MP3Stego*.

Furthermore, I would like to propose a concept for uncompressed images’ that can be
considered an improvement of the LSB method. Its goal is to decrease detectability of
steganography for a human observer. For this the algorithm divides the image into 5
by 5 blocks of pixels (or 3 by 3, depending on capacity needs), and uses only the pixel
in the center for hiding. If, however, the deviation of the entire block is smaller than a
certain value, it is rejected as steganographic space. This can be described as in formula
1 where LS Bi is a function that maps a real number = and a set I of pixel colours to a

boolean value.
TRUE ifol >z

LSBi(x,I) = { FALSE else @)
The result is a decrease in capacity in contrast to simple LSB, but detectability is also
decreased since no hiding occurs in a block if it is found too 'smooth’, i.e. when it
consists of too similar pixels where even the slightest modification might be detected
when looking carefully enough.

It must be noted that formal evaluation is still in progress for this algorithm. From a
statistical point of view it is likely to be vulnerable to the same steganalytical attacks as
the normal LSB method. However, for an average human observer with no statistical
software at his disposal, even the change of several low-order bits can go unnoticed
when one avoids the smooth surfaces during information hiding. Therefore, a future
improvement of the algorithm could be a model where the number of cover bits in a
certain pixel are defined by the deviance of its proximity.

Shttp:/ /www.computing.surrey.ac.uk/teaching /2006-07 /csm25 /Chapter6 /jsteg-h.pdf

*http: / /www.petitcolas.net/fabien/steganography /mp3stego/index.html

5A similar concept may be suitable for uncompressed sound files, but research has not yet been done
for that type of cover with this concept.

Usages of Steganography for Protecting Privacy 29

2 Steganographic file systems

One of the applications of steganography is to use it as a base for implementing a file
system. In such a structure a certain type of steganographic space is used to store
data in such a way as normal file systems do — allowing files and folders to be hidden.
Many of those file systems are ‘real” in the sense that they can be mounted under the
operating system as traditional ones. I would like to describe two implementations
from the surprisingly few: StegFS [MKO00] and the TrueCrypt Hidden Volume®.

2.1 StegFS

StegFS is a driver that allows the user to hide data in unused space of an Ext2 file
system. It has 15 security levels — steganographic ‘storage bins” — which can be incre-
mentally unlocked by their corresponding passphrases, allowing the user to hand over
to the adversary a stego key that corresponds to a low level while repudiating the ex-
istence of data in higher levels. Several mechanisms make it difficult for the adversary
to prove that the additional security levels also contain data, which greatly enhances
the security of data hidden with StegFS.

It must be noted that the place where StegFS hides data is seen as empty space by
the operating system, which means that if write operations occur on the file system,
covertly stored data is likely to be lost.” To counter this effect, the driver can be set
to replicate stored data in the specified number of instances. It is up to the user to
define the compromise between capacity and robustness. The complexity introduced by
steganographic hiding manifests in very high performance drop (sometimes 99%), es-
pecially when writing to a StegFS file system with a high replication factor.

2.2 TrueCrypt Hidden Volume

TrueCrypt is a cryptographic software and its approach to steganography is different
from the classical concept. TrueCrypt hides data inside a file system contained within
the free space of an already encrypted file system. The two file systems have different
passphrases associated with them — thus, the user can choose between mounting the
main file system and the hidden one by entering the corresponding passphrase. If the
user gives the passphrase for the normal file system to the adversary, the latter cannot
prove that there is a hidden one.

TrueCrypt can be instructed to protect the hidden file system when mounting the nor-
mal one by entering both passphrases in the corresponding text fields. If the protection
is not activated, the hidden data is prone to be overwritten if the user writes to the nor-
mal file system.

Shttp:/ /www.truecrypt.org/docs/hidden-volume.php
’This does not happen if the steganographic file system is mounted when the write operations take
place.

30 Adam Maté Foldes

When capacity and robustness are considered, TrueCrypt is fairly similar to a StegFS file
system with a replication factor of 1: the more data is stored on the hidden drive, the
less ‘real’ free space the cover file system has, therefore, the probability of the damage
of hidden data increases when the cover file system is used for writing. Undetectabil-
ity relies on the randomness of the output of the cryptographic algorithms in use. If
the used cryptosystem produces an output whose entropy is almost the same as that
of random data that occupies real” free space, detecting the presence of the hidden
volume through statistical analysis becomes very hard. Complexity also depends on
the cryptographic algorithms in use, most notably the number of them. In a worst case
scenario a cascade of 3 encryption algorithms protects the hidden data which can cause
a serious performance drop.

3 The 'stegodrive’-concept

My proposal, the ‘stegodrive” also addresses the problem of covert storage of informa-
tion. The following goals motivated its design:

e devising a concept that, when impelemented, can be used for protecting privacy
through covert storage of arbitrary type of data

e making steganographic capacity of a group of cover media visible as a randomly
accessible, contiguous space

¢ allowing the user to customise the compromise between capacity and security

e designing the system so that remaining free space can be estimated

The model that aims to address these needs is described in subsection 3.1. It may
undergo minor refinements in the future.

3.1 Structure of the stegodrive

The stegodrive has three parts: the database, the storage part and the graphical inter-
face (see figure 1). The database is responsible for storing the metadata for hidden files,
i.e. their name and size. It is exported into a regular file as a sequence of SQL queries
when hiding some data into the cover files. This list of queries is loaded when ‘'mount-
ing’ the stegodrive, and the HSQLDB driver is used to create a database in memory
from them. The user needs to hide this file through other means (e.g. taking it with
himself on a flash drive that is not accessible to adversaries or storing it with StegFS
with a very high replication factor). In later implementations both the place and the
storage format of the database is likely to change.

The database is designed to support hiding a file into multiple covers if it does not fit
in one in its entirety.It is the responsibility of the other parts to assemble the hidden
tiles from their respective covers upon request.

Usages of Steganography for Protecting Privacy 31

Database

cLl handler

Storage
/0

Algorithm Pseudorandom
e (C2LsB) (Peevigareom (..)

Physical layer (BMP 24 bit) (BMP 256 col] [... |

Figure 1: Structure of the stegodrive

The storage part has basically four elements. First, the physical layer is responsible for
knowing the properties of a certain cover file, i.e. how the parts of the cover that can
be exploited for data hiding can be accessed. There can be physical layer objects for 24
bit BMP files, 256 colour BMP files, WAV files, HTML files, etc.

Second, the algorithm layer is responsible for implementing a specific algorithm for a
certain type of cover medium. For instance, a 24 bit BMP file can have an algorithm
that hides data in the 2 LSBs of a colour component, one that uses only the LSB for each
colour components and one that uses only the LSB but the pixel to operate on is chosen
in a pseudorandom fashion. It is the responsibility of the algorithm layer to hide the
inner structure of the cover for the upper layers, and make it seem as a continuous
space that is randomly accessible.

Third, the I/O layer integrates the space chunks provided by the algorithm layer ob-
jects as a topmost object. It provides an interface to write to and read from the stego-
drive an entire hidden file. It can also provide services such as lossless compression of
hidden files to save space and encryption for additional security. The I/O layer uses
an allocator, an ancillary layer to define the place where the parts of the next file are to
be hidden. Several allocation strategies can exist, e.g. linear and "load balance’.

The graphical user interface allows the user to select the files to be used as covers, supply
a passphrase to derive the stegokey, define the compromise between steganographic
capacity and security with a slider, and hide-extract files of arbitrary type to be pro-
tected. The position of the slider defines the algorithm to be used for a cover medium
type for which several algorithms have been implemented, and — if applicable — the
security parameter of the chosen algorithm.

3.2 Comparison with other implementations

The stegodrive is fundamentally different from the other implementations mentioned:
it does not work on the filesystem level. Consequently, the danger of overwriting the
hidden information is somewhat lower than for a steganographic file system whose
cover file system is in regular use — the user is unlikely to delete the cover files if he
knows that they contain his hidden information, which is impossible for a free space
contained file system because it is up to the operating system to decide where to write,

32 Adam Maté Foldes

depriving the user of the influence on the integrity of his hidden data.

The database file is the most vulnerable point in the system: if it is stolen by an ad-
versary, the purpose of steganography is thwarted. It is possible that in future im-
plementations the database will be stored steganographically. The obstacles mainly
derive from the fact that the entire database is unlikely to fit into a single cover file if
many files are hidden. Furthermore, if the user has too few cover files, the database
can occupy a considerable part in their valuable steganographic capacity. However,
steganographic storage of the database seems to be the only feasible solution from the
point of view of deniability on the long run.

3.3 Evaluation of the stegodrive

The major merits of the stegodrive are:

Controllability: the user has the choice to pick where he wants his data to be hidden,
without the fear that the OS will overwrite it.

Versatility: the concept inherently supports adding almost arbitrary cover types and
algorithms.

Flexibility: the user can pick somewhat less secure steganographic algorithms if he
wants to win some space while sacrificing some degree of security.

On the other hand however, the stegodrive cannot be considered a real file system in
its current state, because it cannot be mounted under an operating system as such —
even support for directories is missing. The implementation of these features would
require considerable additional work, but it is a good way forward.

From the point of view of steganographic efficiency of the stegodrive, the parameters
are dependent on the actual implemented algorithms. However, robustness may be
a merit of the concept itself if the user has and exercises control over the placement
and integrity of cover files. There can be further improvements if chunk replication is
implemented.

4 Conclusion

In this short description I have analysed current implementations, and proposed a so-
lution for applying steganographic algorithms in a novel framework which is suitable
for use in the domain of protection of broadly interpreted privacy. However, there are
some aspects that need further research, most notably the most convenient and secure
placement of the metadata of hidden files. Futhermore, implementation of more secure
steganographic algorithms is also desirable in the future, since the current methods can
be detected by statistical steganalysis.

Usages of Steganography for Protecting Privacy 33

5 Acknowledgements

This paper was made in the frame of Mobile Innovation Centre’s integrated project Nr.
2.3 supported by the National Office for Research and Technology (Mobile 01/2004
contract). I would also like to thank Gabor Gulyas, PhD student and Gy6z6 Gédor,
assistant professor at the Department of Telecommunications at BUTE for supporting
my research.

References

[PHO3] Niels Provos, Peter Honeyman, Hide and Seek: An Introduction to Steganography,
IEEE SECURITY & PRIVACY, 2003

[Cv04] Cvejic, Algorithms for Audio Watermarking and Steganography, Oulu University
Press, Oulu, 2004

[Go00] Ian Avrum Goldberg, A Pseudonymous Communications Infrastructure for the In-
ternet, UC Berkeley, 2000

[MKO00] Andrew D. McDonald, Markus G. Kuhn, ‘StegFS: A Steganographic File Sys-
tem for Linux’, in A. Pfitzmann (Ed.): IH'99, LNCS 1768, pp. 463-477, 2000.

[Pa05] Papapanagiotou, Kellinis, Marias, Georgiadis, Alternatives for Multimedia Mes-
saging System Steganography, in Y. Hao et al. (Eds.): CIS 2005, Part 1I, LNAI 3802,
pp- 589 — 596, 2005

[HLAO2] Hopper, Langford, Ahn, Provable Secure Steganography, School of Computer
Science, Carnegie Mellon University, 2002

[CMO03] Chandramouli, Memon, Steganography Capacity: A Steganalysis Perspective, De-
partment of E.C.E., Stevens Institute of Technology, Department of Computer Sci-
ence, Polytechnic University, 2003

Design of an
Anonymous Instant Messaging Service

Gabor Gyorgy Gulyas
Dept. of Telecommunications
Budapest University of Technology and Economics
H-1117 Budapest, XI. Magyar tuddsok korttja 2. Room: 1.B.113.
gulyasg@hit.bme.hu

Abstract

Instant messaging is in its renaissance; there are hundreds of millions of users
worldwide. However, as we are using these services at home and work, and even
on the way between, several privacy issues arise. In this paper I formalize re-
quirements for privacy friendly messaging services and propose a novel ano-
nymous instant messaging service that fulfils these requirements and allows
anonymity as well. The suggested solution applies the technique called Role-
Based Privacy by organizing profiles in a tree hierarchy. I also provide the analy-
sis of total anonymity and unlinkable pseudonymity in the service and highlight
interesting research objectives for extending the model presented in the paper.

1 Introduction

Today, in the digital age the Internet is getting more integrated with everyday life
and so do social services including Instant Messaging (IM). Age-groups ranging from
teenagers to adults use these kinds of services in their everyday life at multiple loca-
tions including work, home or even use mobile messaging software while being on
the move.

The authors in [SP04] interviewed several subjects and mention several privacy re-
lated issues regarding IM services: privacy from non-contacts, privacy regarding
availability, and privacy of the communication. However, these problems are generic

and concerning communication committed in chat services as well (previous work in
[GGO6]).

Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1), pp. 3440, 2009

Design of an Anonymous Instant Messaging Service 35

In this paper I propose a messaging service model that allows anonymity. The model
has both the characteristics of instant messaging and the chat services: should have a
contact list and allow conferences (instant messaging) and rooms that may be ex-
plored separately (difference between conferences and rooms are conferred later).
For achieving anonymity and enhanced privacy settings on visibility I propose Role-
Based Privacy (RBP) [RLOS].

2 Requirements

The motivation of this work is to propose a privacy enhancing messaging service.
The goals that such a service should accomplish are enlisted below and based on the
proposal of [SP04] but refined and derived from previous work in [GGO6]:

e user privacy should be protected from non-contacts by flexible protection op-
tions

e privacy should be strengthened regarding availability

e anonymity should be achievable in some contexts

e in other contexts unlinkable pseudonymity should be available for managing
multiple personae

e the privacy of communication should be protected on the network

o flexible and coherent privacy settings should help users

The threat model assumed by this paper is simple: service and service level operator
users are trusted (in future work this assumption may be revised), and regular users
are not. Hence, user privacy should be primarily protected against other users.

3 Anonymous Messaging Service

There are different aspects and architectures for messaging services. However, due to
the nature of instant messaging and chat services I propose the use of a centralized
service (harmonizing with the concept of a trusted service), but different architecture
types may also be applicable. For the other requirements enlisted in the previous sec-
tion I propose the use of identity management based on the technique of Role-Based
Privacy (see Section 3.2).

3.1 Network Architecture

For achieving anonymity user privacy should be strengthened separately on the
network and application level as well. Besides protecting the confidentiality, integri-
ty of network level communication application level protocols, such as identity man-
agement should be designed with privacy in mind (this concept is presented in pre-
vious work for the web in [GGO08]).

36 Gabor Gyorgy Gulyas

For achieving network level anonymity an anonymizing service should be used,
however, as the architecture is centralized, a MIX type service should be used to
access the central servers [DC81], such as TOR, JAP or I2P!. Peer-to-peer connections
(for file transfers, private conversations, etc.) may be anonymized or protected by
other means, such as traffic analysis protected Transport Layer Security (TLS) chan-
nels.

3.2 Identity Management with Role-Based Privacy

Role-based profile management is the core concern of the service. In everyday life we
share information with others according to the transactions we commit (e.g. shop-
ping in the grocery), the role we play (e.g. co-worker, a chess club or a family mem-
ber), or we conform to other criteria. If necessary these roles could be represented
with unlinkability, meaning other participants are unable to link profiles realizing
different roles. This concept should be implemented in messaging services to offer
enhanced features on availability and anonymity as well.

Accordingly, I suggest that in services model the user should be able to manage her
identities by setting up different profiles for different places, such as rooms, confe-
rences. Profiles are structured data sets including many kinds of descriptive informa-
tion on the identity such as screen name, contact information, status (visible, un-
available, busy, etc.), and in some cases a globally unique identifier that was selected
during the registration process.

The most prominent difference between conferences and rooms is how users identify
themselves: with their globally unique pseudonym in conferences, and with locally
unique identifiers within rooms for allowing anonymity. In the latter case anonymity
is possible (unlinkable pseudonymity) as profiles may be changed any time without
the presence of any trivially linkable information (such as identifiers). However,
identity changes should be carried out carefully (e.g. no messages or timings should
also indicate the link between profiles). In rooms total anonymity (no identifiers)
should also be an option.

There should be other ways for contacting other users, like dialogues and contact
lists (also called buddy lists in some IM services). A dialogue should be represented
as a conference; however, global identifiers may not be revealed as it may not be
known. Contact lists would be useless without global identifiers; therefore contacts
(ordered in contact groups) should be identified under any circumstances.

For providing flexible and easily perspicuous identity management a profile hie-
rarchy should be used: profiles should be ordered within a tree-like hierarchy for
providing inheritance of profiles. Unset profiles should inherit their settings from the
nearest ancestor that is set. The concept of using a profile hierarchy is similar to the
concept introduced by the authors in [MHO08] on how pseudonyms should be used

1 http://www.torproject.org, http://www.i2p2.de, http://anon.inf .tu-dresden.de/index_en.html

Design of an Anonymous Instant Messaging Service 37

for managing linkability. The lower profiles are set with the more distinct values the
higher unlinkability is achieved against other users.

However, total unlinkability of profiles is only achievable in rooms where no global
identifiers are attached. In other contexts only separable visibility may be achieved,
which is also an important privacy protecting feature [SP04]. The profile hierarchy is
illustrated on Figure 1.

Main Profile

e T

Contact list

Rooms

Conferences

Public profile

'

'

'

i™ group

i" room

i" conference

'

.th . .th
j™ user in the i group

'

™ user in the
i™ conference

Figure 1. Profile hierarchy.

I elaborate the usage of profile hierarchy with a simple example. For instance a user
is known as ‘John Doe” within all rooms. However, he joins the room called ‘Flea
Market” with an alias ‘Bob’. Since other users only see these information these identi-
ties may not be linked, although the user may remove the profile set for the flea mar-
ket any time to reveal a higher level profile know as ‘John Doe’. In conferences the
pseudonym acquired would also be visible in the profile providing linkability.

In messaging services today similar operations are used as below for managing pri-
vacy; however, the proposed operations are sound with the RBP model presented
and defined to manage profiles in the hierarchy by realizing privacy and status set-
tings at the selected node of the profile hierarchy:

e Ignore (<& enable): an ignored user (identity) will see the ignorer user’s profile,
however, will not be able to send messages to her.

e Ban (< enable): similar to the ignore operation, but the banned user sees the
banner’s offline profile (or which is for unknown users). Banning would allow
hidden surveillance in rooms, thus it should not be allowed (allowing ano-
nymous reading would realize the same effect).

o Identity change < reveal identity: in rooms this operation means an identity
change (introducing unlinkable identities), in other places it is a simple profile
changing operation.

The need for privacy protection against non contact users should be handled by in-
troducing anonymous credentials [JC01]. For instance malicious actions need to be

38 Gabor Gyorgy Gulyas

stored in a special passport which is only accessible for the service, but users may
declare restriction towards it.

For instance if the service detects that a user sent a SPAM message, it increases the
SPAM counter in the passport, or a service operator should be able to add tags to it
(e.g. “virus” indicating that the user’s computer was infected with some kind of a
virus). These entries can not be accessed by other users, but should be able to define
constraints for specific actions regarding these settings, such as limiting the access to
their public profile for user without spamming activities.

3.3 Further Privacy-Related Enhancements

Profile management settings need to be harmonized with privacy protection to pro-
vide a better protection against distraction caused by alerts. For instance at work con-
tacts in the friends group should not be able to distract the user, however, events ori-
ginated by contacts in the co-workers group should alert the user. This feature pro-
vides a better and more flexible privacy protection.

Further properties may be introduced for the rooms and conferences to strengthen
privacy (and for other contact places also), such as limitations (file transfer, file size,
message per sec, etc.), password or key requirements, proper credentials required for
join, anonymous comments. In rooms anonymous observation should also be an op-
tion.

Another possible extension would be enabling modular event sources, such as a user
defined time-table for modifying profile settings, or adding location based modules
(based on WiFi Access Point information or GPS location). By using these modules
the user may disable co-workers after 17h, or only allow access to her office profile
while she is in the company’s building.

4 Analysis of the Anonymous Messaging Service
Model

The anonymity criteria presented in [GGO08] can be adapted to the conferred messag-
ing scenario, in which anonymity is still a core concern, but additionally the unlinka-
bility of identities is another one, and should be treated equally to anonymity: intro-
ducing unlinkable profiles allows a different level of anonymity (unlinkability is re-
garded against other users).

As the presented service model relies on a network level anonymizer (which elimi-
nates threats regarding the privacy of the communication) only users within the ser-
vice should be considered as potential attackers. Requirements regarding availability
issues, anonymity and unlinkable pseudonymity are achieved by RBP within room:s,
conferences and contact lists.

Design of an Anonymous Instant Messaging Service 39

In conferences and on the contact list anonymity is not an option, although the pro-
posed technique provides flexible and easily manageable privacy protection by al-
lowing proper profile management. These parts of the service provide pseudonym-
ous identification instead of anonymity (this may be recognized as a certain level of
anonymity). Anonymity achieved in rooms by introducing unlinkable identities is
always possible and total anonymity may also be enabled.

In some contexts the presence of too few individuals may reduce the chance of un-
linkability. Hence, allowing the presence of some bots in the room may also help,
especially if it is possible for the user to take over the control on one of them. The bot
should be exiting when the user does, for avoiding confusing situations (e.g. two dif-
ferent users take over the same bot within an uninterrupted session).

5 Conclusion and Future Work

The proposed technique, Role-Based Privacy, is a possible solution for offering better
privacy management and anonymity if implemented properly. In my opinion the
suggestions presented in this paper should be generalized furthermore and extended
for services based on social networks (some privacy vulnerabilities addressed in
[MCO08]), which are getting more and more widespread. Related work to this topic
has already been submitted and accepted [GG09]. Further analysis of anonymity is
also a research objective in the future within the generalized RBP model for social
networking services; for instance examining analytically the unlinkability of sepa-
rated identities is an interesting problem.

6 Acknowledgements
I wish to thank my supervisors, Dr. Sdndor Imre and Rébert Schulcz, for supervising
and supporting my research, and for funding my travel expenses.

This paper was made in the frame of Mobile Innovation Centre's integrated project
Nr. 2.3 supported by the National Office for Research and Technology (Mobile
01/2004 contract).

7 References

[DC81] D. Chaum, “Untraceable electronic mail, return addresses, and digital pseu-
donyms”, The Communications of the ACM 24, February, 1981, pp. 84-88.

[GGO06] G. Gulyas, “Analysis of anonymity and privacy in instant messaging and
chat services”, In: Dr. Ferenc Kiss (ed.), Tanulmanyok az informadcio- és tudasfolya-

40 Gabor Gyorgy Gulyas

matokrol 11. (Alma Mater Series), pp. 137-157., BME GTK ITM, October 2006. ISSN:
1587-2386, ISBN: 963-421-429-0. (in Hungarian)
Online: http://pet-portal.eu/files/articles/2006/10/im _privacy.pdf

[GGO08] G. Gulyas, R. Schulcz, and S. Imre, “Comprehensive Analysis of Web Privacy
and Anonymous Web Browsers: Are Next Generation Services Based on Collabora-
tive Filtering?”, Joint SPACE and TIME International Workshops 2008, Trondheim,
Norway, 17/06/2008.

[GGO9] G. Gulyas, R. Schulcz, and S. Imre, “Modeling Role-Based Privacy in Social
Networking Services”, SECURWARE 2009, Athens, Greece, 18-23/06/2009. (accepted)

[JCO1] J. Camenisch, A. Lysyanskaya, “An Efficient System for Non-transferable
Anonymous credentials with Optional Anonymity Revocation”, In the Proceedings
of the International Conference on the Theory and Application of Cryptographic
Techniques (EUROCRYPT '01), London, UK, 2001, pages 93-118.

[MCO08] M. Chew, D. Balfanz, and B. Laurie, “(Under)mining Privacy in Social Net-
works”, W2SP 2008, Oakland, California, USA, 22/05/2008.

[MHO08] M. Hansen, A. Schwartz, and A. Cooper, "Privacy and Identity Manage-
ment", IEEE Security and Privacy, vol. 6, no. 2, Mar/Apr, 2008, pp. 38-45.

[RLO8] R. Leenes,]J. Schallabock, and M. Hansen, “PRIME white paper (V3)”,
15/05/2008.

[SP04] S. Patil, A. Kobsa, “Instant Messaging and Privacy”, In Proceedings of HCI
2004, Leeds, UK., pp. 85-88.

Effectivity of Various Data Retention Schemes for
Single-Hop Proxy Servers

Dominik Herrmann
University of Regensburg, Germany

Rolf Wendolsky
JonDos GmbH, Regensburg, Germany

Abstract

Recently, member states of the European Union have legislated new data re-
tention policies. Anonymisation services and proxy servers undermine such data
retention efforts, as they allow users to masquerade their IP addresses. Providers of
such services have to implement effective data retention mechanisms allowing for
traceability while at the same time preserving users’ privacy as far as possible. In
this paper we analyse the effectivity of four data retention schemes for single-hop
proxy servers which use information already stored in logs today. We assess their
effectivity by applying them to the historic logs of a mid-range proxy server. Ac-
cording to our evaluation it is insufficient to record data on session-level. Users can
only be unambiguously identified with high probability if access time and source
address of each request are stored together with the destination address. This re-
sult indicates that effective data retention based on currently available identifiers
comes at a high cost for users’ privacy.

1 Introduction

In 2006, the European Union issued the Data Retention Directive [4]. For the purpose
of law enforcement, Internet Service Providers (ISPs) may thereby be required to un-
cover the identity of a user, given an IP address and a timestamp. The Directive has to
be implemented by member states until March 15th, 2009. The German implementa-
tion for Internet access has gone into force on January 1st, 2009. Since then, providers
of telecommunication services have to retain transformation data for a period of six
months.

While the implementation of data retention measures is rather straightforward for
ISPs, interesting questions arise when data retention is applied to proxy servers and
anonymisation services. There is still considerable uncertainty about which types of

Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1), pp. 4148, 2009

42 Dominik Herrmann, Rolf Wendolsky

services are affected by the new data retention regulations. Although those legal dis-
cussions are of high practical relevance, they often neglect the implications regarding
the involved technologies and the impact on users’ privacy. The factual evidence pre-
sented in this paper is intended to foster a more technology-aware discussion.

In the context of anonymisation services and proxies, data retention measures have
to allow for traceability, i.e., uncovering the IP address of a user from whom a sus-
picious connection originated (cf. Richard Clayton’s PhD thesis for more information
on that topic [3]). While some people consider traceability of Internet users funda-
mentally necessary to enable crime detection and prevention, it is criticised by others
for unduly infringing users’ privacy. Moreover, ISPs complain that implementing and
operating a data retention infrastructure is a costly undertaking. Law enforcement
agencies (LEAs) or related governmental organisations have not specified technical re-
quirements regarding data retention on proxy servers and anonymisation services so
far. Devising effective data retention mechanisms allowing for traceability while at the
same time preserving users’ privacy is the challenge at hand.

In this context Kesdogan et al. [7] have researched the effectivity of various intersection
attacks from the literature using the log files of a proxy server. Berthold et al. [1] have
evaluated the effectivity of intersection attacks on the AN.ON/JonDonym anonymi-
sation service, i. e., whether the provider of the anonymisation service can unambigu-
ously reconstruct the source IP address of an offender, given a number of events when
the designated offender was using the service. The authors find that the size of the
anonymity group decreases rapidly with an increasing number of events available for
building the intersection. According to their results another means to improve trace-
ability is increasing the accuracy of the timestamps used by LEAs. Intersection attacks
have one drawback, though: they rely on the fact that LEAs are able to identify mul-
tiple requests from the same offender, all of them coming from the source IP address.
Kopsell et al. [8] propose a request-level data retention scheme specifically designed
for distributed anonymisation services. It is based on threshold group signatures to
allow for the revocation of the anonymity of offending users while preserving the pri-
vacy of all other users. Kopsell et al. do not define which kind of information is stored
to identify offending users, though. The schemes in this paper are possible realisations
for their proposal.

The debate regarding to what extent providers of proxy servers and anonymisation ser-
vices will have to implement data retention has not settled yet. In this paper we will
analyse various conceivable retention schemes which only utilise data already avail-
able today to the providers of such services. The evaluated schemes do not rely on
intersection attacks and could be implemented easily. Based on an empircial study us-
ing the log files of a medium-range proxy server we find that data retention schemes
utilising currently available data is only effective if information about the requested
destination addresses is stored, which is not satisfactory from a user’s perspective.
Therefore, our paper motivates further research in this field in order to find better data
retention schemes which address the security and privacy requirements of all involved
parties.

Effectivity of Various Data Retention Schemes for Single-Hop Proxy Servers 43

0.1 0.04
0.035
= 001 - = 003}
(8] Y (8]
c < [
g g 0025 |
g g
= 0.001 { = 0.02 ""«.‘”'
= = Y
B g 0015} A
[J] [) K
T 00001 } € oot “,
- 0.005 | o
- ’“‘mM’
16-05 0 e
1 10 100 1000 10000 100000 0 20 40 60 80 100 120 140
Rank of site Rank of Source IP
(a) Popularity of web sites (b) Activity of source IP addresses

Figure 1: Distribution of request numbers for the evaluated sample

2 Evaluation Methodology

In the interest of conciseness we limit our analysis to HTTP traffic which is relayed by
single-hop web proxies. In order to get comparable results we implemented various
data retention schemes and applied all of them to a common log file of a proxy server.
As providers of anonymisation services refrain from keeping log files containing in-
formation to the necessary extent, for this preliminary study we used Squid log files
of a local school with about 1,000 students and about 100 staff members. The log files
contained the pseudonymised requests of six months (August 2008 to February 2009).

The combined log file contains 9,074,962 requests in total originating from 126 distinct
(local) source IP addresses. The users requested objects from 33,258 destination IP
addresses which have been accessed via 51,746 different host names. The plot in Fig-
ure la shows the relative access frequencies of the host names ordered by their popu-
larity (based on the number of total requests per host name, most active first), which
indicates that in our sample the retrieved web sites follow a Zipf-like or power law
distribution [10]. This feature has been observed in several earlier studies for web re-
quests from a homogenous community of users (cf. [2, 5]). According to the histogram
in Figure 1b the user group consists of both, power users and less active ones.

These characteristics have to be kept in mind when interpreting the results of our study,
i.e., they only apply to systems which serve a rather small and homogenuous user
group and probably cannot be easily generalised to large-scale anonymisation services.
The absolute values of the results are certainly affected by the specific composition of
our user group and its behaviour in a school setting.! Nevertheless, we believe our
proposed methodology may be used to assess the effectivity of data retention schemes
on such systems.

For the evaluation we created stripped-down versions of the Squid log file contain-
ing only the information which would be available for the examined data retention
schemes. We then analysed the effectivity as expressed by the ratio of requests which
could have been unambiguously attributed to the correct source IP address for the var-

1Some pages containing unsuitable content for students are filtered at the proxy level. This may add
to the bias in our sample.

44 Dominik Herrmann, Rolf Wendolsky

Fout,

Single-Hop
Proxy Server

a
out,
Usern | @n, ' Web Server m

Figure 2: Model of the evaluated single-hop proxy scenario

ious schemes. The ratio was calculated by complete enumeration, i. e., we created LEA
queries for each request contained in the log file, every time recording the number of
potentially matching requests. For maximum effectivity the result set would have to
contain only one request for each query.

3 Data Retention Schemes for Single-Hop Systems

Figure 2 illustrates the single-hop setup. The proxy is used by n users with IP addresses
i, € Ai,. From the viewpoint of the destination server, the request originates from
an IP address aou; € Aou- Note that [Aj,| > [Aoy| in most cases, i. e., the number of
unique input addresses exceeds the number of IP addresses of the proxy. For our proxy
| Aout| = 1. We will present four different retention schemes in the following sections.

3.1 Recording Input Addresses on Session-Level

Session-oriented services like VPN-based anonymisation services could record the re-
levant session-level information. If 4., and t.,q denote begin and end timestamps of
a user’s session with the anonymisation service, the provider would store the tuple
(tstart, tends @ins Gout) for each session. Note that individual HTTP requests, which are
relayed during a session, are not considered. From a privacy point of view this solution
is the most desirable form of data retention. Only a bare minimum of information is
recorded. Personal information — apart from the usage time — is not stored.

Traceability cannot be guaranteed at all times with this approach. Faced with a LEA

query ¢ = (t@,al% a'%%,) for some timestamp ¢, one of the proxy’s output ad-

dresses a(()%)t € A,y and the destination address aé?st, e.g., 4=(2008-10-10 9:43am GMT,
132.199.2.111, 66.249.93.104), the service provider may not be able to uniquely iden-
tify one of its users as requested. He can only provide all source IP addresses a;,, of
all sessions established at t(? and relayed over a,,;. Note that the destination address
ag‘i)st does not help to reduce the anonymity group because the service provider is not

storing any destination addresses in this scheme.

With this scheme even inactive users contribute to the anonymity group. Intuitively,
tracing a request back to its originator is only possible if there is only a single session
at t(9, which is very unlikely for popular proxies. If multiple requests from different
sessions could be attributed to the same user, LEAs could intersect the result sets to
decrease the size of the anonymity group.

Ratio of unambigiously identifiable sites

Effectivity of Various Data Retention Schemes for Single-Hop Proxy Servers

08

0.6

0.4

Ratio of unambigiously identifiable sites

0.8

0.6

04

o "
t +
0.2 Ht 02t X
t& R
———] +— -~
oL , X i o Lo , , !
0 100 200 300 400 500 600 0 50 100 150 200

Session duration [s]

(a) Varying session durations

Available timestamp accuracy [s]

(b) Varying timestamp accuracy

45

Figure 3: Data retention effectivity for session- and request-based services

Obviously, traceability largely depends on the duration of the individual user sessions.
We analysed the influence of the session length on the effectivity by grouping consec-
utive requests from an individual IP within the simulated session duration into one
contiguous session. As shown in Figure 3a the effectivity of this scheme is dropping
extremely fast with increasing session durations. Even for rather short sessions of only
300 seconds, less than 5% of requests can be identified unambiguously. For busier
proxies with thousands of users this figure is expected to approach zero.

Using a regression analysis we found that the plotted data closely fits a power function
(y ~ 0.392127 3932 with a residual sum of squares rss ~ 3.018 - 107%).

3.2 Recording Input Addresses on Request-Level

Common web proxy servers, e.g., the Squid cache proxy or many form-based
CGI proxies, operate on individual HTTP requests. They could store the tuple
(ttransforms @in, Gout), Where tyansiorm 1S the point in time when the input address was
transformed into the output address.? Anonymity groups become considerably
smaller as inactive users are not included in the result set any more. Traceability cannot
be guaranteed when multiple users issue requests at the same time, though.

Figure 3b depicts the effectivity of this scheme. Although the plot looks similar to
the session-based case, request-based data retention is more effective: the effectivity
depends only on the accuracy of the timestamps used in the log files and the LEA
query. The accuracy will be degraded if the clocks of the service provider and the
destination site are not synchronized or if non-deterministic network latencies cause
unforeseen delays.

In comparison to the session-based data retention scheme, logging data on the request
level offers potentially higher effectivity because of a much more precise time resolu-
tion. Given a hypothetical timestamp accuracy of 60 seconds, all requests within a time
window of 30 seconds around the point in time specified in the LEA query are part of

20f course, this scheme is not limited to services operating on a request level, i.e., session-based
services like VPNs could store request-level data, too.

46 Dominik Herrmann, Rolf Wendolsky

o 099 o 099
g o098 8 o098
Z 097 2 o097 %
2 el - £ e E—
z o — 2 09
g 095 g 095
2 094 2 094
§ 0.93 % 0.93
5 o 5 om
o o091 o 001
g o9l— : : : 8 o09l— : : :
0 50 100 150 200 0 50 100 150 200
Available timestamp accuracy [s] Available timestamp accuracy [s]
(a) Recording IP addresses (b) Recording host names

Figure 4: Impact of storing destination addresses on data retention effectivity

the result set. For a hypothetical timestamp accuracy of 60 seconds about 7.9 % of re-
quests can be unambiguously identified in our sample. This ratio climbs up to 39 % if
timestamp accuracy would be increased to one second. Again, we expect these figures
to decrease tremendously on busy proxies.

We presume that realistic values of the timestamp accuracy for Internet hosts lie in
the range between one and 60 seconds. To the best of our knowledge the available
timestamp accuracy has not been analysed so far. Further research is necessary.

3.3 Recording Destination IP Addresses

In the previous section we have excluded destination addresses from data retention.
For increased traceability, anonymisation services might be forced to store the IP ad-
dresses of the destination servers. In this case they would store (i ansform, @ins @out s Qdest)
for each request. This approach reduces the size of the anonymity group considerably.
Now, only IP addresses of users requesting an object from aéqelt at time @ are included.
So, again, the effectivity of this scheme depends on the available timestamp accuracy
(cf. Figure 4a) . Given a timestamp accuracy of 60 seconds 95.8 % of the requests in
our sample can be unambiguously attributed to a single user with this scheme (96.8 %
given an accuracy of one second). Effectivity is still not perfect, though, as there is
still a (relatively small) possibility that several users are accessing different objects on
the same destination server within the requested time window, which may happen for
example when various web sites are (virtually) hosted on the same physical server.

From a privacy viewpoint storing destination IP addresses is not desirable, though, as
they may reveal information about the interests of users to the service provider for the
whole retention time span.

3.4 Recording Destination Host Names

The last scheme we present in this paper is based on the previous one. Instead of
recording destination IP addresses, DNS host names are stored in order to further re-

Effectivity of Various Data Retention Schemes for Single-Hop Proxy Servers 47

duce the size of the result set. The result set will then only contain source IP addresses
of users who have accessed the same (virtual) host at a given point in time, thus allow-
ing for an exact match in most cases.

As expected our results show only small increases in effectivity when host names are
stored (cf. Figure 4b). Given the timestamp accuracy of 60 seconds, for 96.3 % of the re-
quests the originator can be identified. Apparently, the set of simultaneously retrieved
pages which are co-located on the same host is rather small in our sample. Note that ef-
fectivity could still be improved slightly if — instead of host names — the complete URLs
including HTTP query parameters would be stored. Even then, traceability could not
be guaranteed for encrpyted web sites (HTTPS), though, because the proxy could only
log host name and port of them. And of course multiple users might still coinciden-
tally request the same URL. As the expected benefits of this scheme are rather low for
our sample, we have not implemented it so far.

The effectivity of this approach comes at a high cost. While host names may disclose
the personal interests and habits of users, URLs may even contain personal or sensitive
information (e.g., search engine queries, session IDs, and unencrypted credentials).
Storing information of this kind on a proxy server over a period of six months causes
considerable privacy and security issues and therefore seems disproportionate.

4 Conclusion

This paper examined four data retention schemes in terms of their effectivity. The pre-
sented schemes only rely on data easily available to providers of proxy and anonymi-
sation services, i.e., they are straghtforward to implement based on already existing
logging facilities. Effective data retention schemes have to offer traceability of —ideally
— all requests which are handled by such services to law enforcement agencies.

According to our empirical study, none of the examined schemes can guarantee trace-
ability for all requests. Namely, we found that storing session-level data is not suffi-
cient because the anonymity groups become too large even on our little-frequented
proxy for typical session lengths. Logging on a request-level basis seems more promis-
ing, but only if the destination address of each request is recorded — which infringes
users’ privacy. None of the evaluated data retention schemes provides effective trace-
ability while respecting users’ privacy. Although we have utilised a synthetic sample,
we believe that our methodology is of general value and it could be applied to many
kinds of anonymisation services, e.g., CGl-based proxies using HTML forms or VPN
solutions (as provided by anonymizer.com), mix cascades (provided by JonDonym [6])
and Onion Routing (cf. the Tor project [9]).

In future work we plan to repeat the evaluation with log files from a proxy server
with a higher load and a more diverse user base or even a real-world anonymisation
service. This will allow us to rule out any bias caused by the data source chosen for
this preliminary study. Within this future story we will also be able to examine the
efficacy of intersection attacks, i. e., under which circumstances they reduce the size of
the anonymity groups over time.

48 Dominik Herrmann, Rolf Wendolsky

Furthermore, we plan to evaluate what timestamp accuracy can be achieved in a prac-
tical environment in order to quantify the actual size of the anonymity groups for the
various schemes. Another promising field for future research activities is the design
of more advanced data retention techniques, e. g., by introducing dedicated retention
identifiers which preserve the privacy of users, while at the same time offering im-
proved traceability.

References

[1] Stefan Berthold, Rainer Bohme, Stefan Kopsell. Data Retention and Anonymity
Services. In: Proceedings of IFIP /FIDIS Summer School 2008, Brno, Czech Repub-
lic, http:/ /www.buslab.org/SummerSchool2008/slides /Stefan_Koepsell.pdf.

[2] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web Caching
and Zipf-like Distributions: Evidence and Implications. In: INFOCOM "99. Eigh-

teenth Annual Joint Conference of the IEEE Computer and Communications So-
cieties. Proceedings, New York, USA, 1999.

[3] Richard Clayton. Anonymity and traceability in cyberspace. Technical Report,
based on dissertation submitted August 2005. University of Cambridge, 2005.

[4] European Parliament & Council. Directive on the retention of data gener-
ated or processed in connection with the provision of publicly available elec-
tronic communications services or of public communications networks (Directive
2006/24/EC), March 15, 2006.

[5] Steven Glassman. A Caching Relay for the World Wide Web. In First International
Conference on the World-Wide Web, CERN, Geneva, Switzerland, May 1994.

[6] JonDonym. http:/ /www.jondos.de/

[7] Dogan Kesdogan, Lexi Pimenidis, and Tobias Kollsch. Intersection At-
tacks on Web-Mixes: Bringing the Theory into Praxis. In: Proceed-
ings of First Workshop on Quality of Protection, Milan, Italy, 2005,
http:/ /www.freehaven.net/anonbib/cache /KesdoganPK06.pdf.

[8] Stefan Kopsell, Rolf Wendolsky, and Hannes Federrath. Revocable Anonymity. In:
Emerging Trends in Information and Communication Security. Lecture Notes in
Computer Science, 3995. Springer, Berlin, pp. 206-220, 2006.

[9] The Tor Project. http:/ /www.torproject.org/

[10] George Kingsley Zipf. Relative frequency as a determinant of phonetic change.
Reprinted from the Harvard Studies in Claasical Philology, Volume XL, 1929.

Anonymity Techniques — Usability Tests of Major
Anonymity Networks

Jens Schomburg
IT-Security Group
University of Siegen, Germany
jens.schomburg@student.uni-siegen.de

Abstract

The anonymity provided by different anonymity networks also depends on the
amount of users participating in these networks. As one cannot expect that a typ-
ical user is advanced in installing, configuring and using anonymity software, it
becomes clear that the usability of these networks is important. This paper evalu-
ates the usability of the four major anonymity networks Tor, Jap/JonDo, I2P and
Mixmaster /Quicksilver adopting the cognitive walk-through method. The results
indicate that Jap/JonDo and Tor are easier to install, configure and use than I2P or
Mixmaster/Quicksilver. It was also found out that Mixmaster can not be installed
by a novice user.

1 Introduction

There is academic coverage on the major software implementations of anonymizing
network techniques. Most of these works cover the technical issues linked to anonymiz-
ing networks, which constitutes an important aspect. Anonymizing networks can
only offer a certain degree of anonymity if the amount of participating users is high
enough'. The developer and provider should try to acquire as many users as possible.
Additionally, one cannot assume that all users are computer experts or advanced users
thus the importance of usability becomes clearer [11]. Novice users typically rate their
security not by hard facts rather their subjective feelings.

Because there are a lot of software implementations of anonymous communication
techniques, this work focuses on the most popular ones [10] which are the ones with
the highest amount of users. Consequently, Mixmaster (Email Messaging and Usenet)
and a few low latency networks (Tor, I2P, JonDo) were examined. At this point it has to
be mentioned that it was impossible to install and configure a pure Mixmaster imple-
mentation. An alternative Mixmaster client had to be chosen (Quicksilver). This will

!In general it can be said the more users those networks have, the bigger is the offered anonymity.

Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1), pp. 49-58, 2009

50 Jens Schomburg

be explained in detail in section 3.4. Typical application areas of the Internet are web-
browsing, sending e-mails and file sharing. This research is limited to the use cases
web-browsing and e-mailing because additional examination on file sharing is out of
scope.

As an unconditional prerequisite to using the software it is necessary to install and
configure it first 2. At this point many novice users fail and loose interest in something
if this task is not easy to achieve. Usability, thus is an important aspect that should not
be neglected and will therefore be focused on in this paper. The tests are done with
Windows Vista Home Premium as this is the operating systems of many end-users.

2 Related works

As mentioned in the introduction, no academic paper compared the four major anonymity
network implementations considering usability. In detail this is the installation, con-
figuration and usage of the software. There are several overviews [10] and [8], char-
acteristic comparisons (technical ones regarding the anonymity provided) but just one
paper about usability which focuses on different configurations of Tor. Underlying the
current paper are the following works:

In his PhD theses [10], chapter three Lexi Pimenidis gives an overview over anonymiz-
ing network techniques. He also separates the deployed anonymity networks in major
and minor ones, based on the amount of users. This classification was also employed
here.

Jeremy Clark, P. C. van Oorschot, and Carlisle Adams examine the usability and de-
ployability of different Tor interfaces [7]. They developed several guidelines which are
employed in this paper as well (in section 3).

Claudia Diaz, Len Sassaman, and Evelyne Dewitte evaluate the anonymity provided
by two mix implementations [9], namely Mixmaster and Reliable. When discussing
the provided anonymity by Mixmaster their findings will be drawn on.

George Danezis and Claudia Diaz give an overview of anonymous communication

channels in this paper [8]. When comparing security benefits, their research will be
alluded to.

3 Installation and configuration test

In the current evaluation of usability of the different anonymisation services the same
evaluation methodology as in [7] is chosen. They used a cognitive walk-through. The
core tasks designated in the latter paper are also reused:

e CT-1Successfully install the anonymisation software and the components in ques-
tion

e CT-2 Successfully configure the browser (E-mail client in Mixmaster /Quicksilver
case) to work with the anonymisation software

2There applications available that do not have to be installed, but they are omited here.

Anonymity Techniques — Usability Tests of Major Anonymity Networks 51
e CT-3 Confirm that the web-traffic/E-mail is being anonymised

o CT-4 Successfully disable the anonymisation software and return to a direct con-
nection

The set of guidelines that are also used:

e G1 Users should be aware of the steps they have to perform to complete a core
task.

e G2 Users should be able to determine how to perform these steps.
e G3 Users should know when they have successfully completed a core task.

e G4 Users should be able to recognize, diagnose, and recover from non-critical
errors.

e G5 Users should not make dangerous errors from which they cannot recover.

e G6 Users should be comfortable with the terminology used in any interface dia-
logues or documentation.

e G7 Users should be sufficiently comfortable with the interface to continue using
it.

e G8 Users should be aware of the application’s status at all times.

For a detailed explanation of the guidelines see [7].

3.1 Tor

The Tor website [1] as a starting point to achieve anonymity in the internet (completing
CT-1 - CT-3) is clearly layouted. The language of the site is held simple and natural so
it fits to Gé.

The user can go on in order to complete CT-1 by clicking on “Download Tor” in the
“Summary” navigation on the right side. This is G1 and G2 compliant. Afterwards
one can choose between two Windows installation bundles and one for OS X. There is
no hint as to an installation manual as it is on the download page to which one get by
choosing the “Download” link in the navigation bar on top. This is inconsistent and
violates G1 and G2.

It is also not clear why the downloaded file is named Vidalia-bundle. This partly con-
flicts with G2. Users might expect a file named “Tor” for example. The circumstance
that also Vidalia (a GUI for Tor), Privoxy (a filtering web proxy) and Torbutton (a Fire-
fox extension) have to be installed additionally to Tor, is explained in the manual and
in the first installation dialogue. In the next dialogue is a description box where the
component description text is shown if the user moves the mouse over the component.
This factor advanced since the research done in [7] and fulfils G6. The installation is
straight forward and supports the user ideally to achieve CT-1. This is concordant

52 Jens Schomburg

with G1 and G2. An installation progress bar, which is used to show the progress of
unpacking the program files, is used. This supports G8. As the bar reaches 100% the
Firefox standard dialogue for installing extensions pops up. It recommends to install
Add-Ons from trusted sources. After confirming to install this extension, the installa-
tion of the Vidalia Bundle is completed. This confirmation screen signals the user that
CT-1 is completed (G3).

Afterwards the Vidalia control panel window opens and builds up a connection to the
Tor network. It takes about two minutes until a connection is established. Meanwhile
the user is not aware of the application status. This violates G8. In Firefox there is a
cue added to the status bar that states “Tor deactivated”. By clicking the cue switches
to “Tor activated” and it is indicated to the user that her traffic is being anonymised
(G8). The recommended settings were chosen and it worked immediately, so CT-2 is
also completed.

The user is not automatically led to a test website where she can see if CT-3 is fulfilled
but there is a check website at the tor-project®.

3.2 I2P

The Website [2] is clearly arranged and welcomes the visitor with an introduction about
what I2P is, which applications are supported except for web-browsing. This is con-
tradictory to G1 and G2. The language is too technical for a novice user (G6). This
holds for the picture as well which is meant to explain the function of I2P. In order to
complete CT-1 it can be assumed that a user opens the download website where she
is confronted with three different downloadable versions: graphical installer, headless
install and source install. The descriptions given for each version might bring novice
users to download the graphical version. This is consistent with G2. G6 and G2 are
violated as the precondition for installation (Sun Java 1.5 or higher, or equivalent JRE)
is stated without a link or explanation. It remains to mention that G6 is disregarded
several times.

After downloading the graphical installer file and executing it, the user gets to the
installation directory-selection dialogue. Confirming a folder as an installation path
the software is being installed and a progress bar is shown. By completing this task the
user sees a dialogue which signals him that the installation is finished. This installation
procedure is straight forward and complies with G1, G2, G3 and G6; CT-1 is reached.
When selecting default options, three icons are installed on the desktop: “Start I2P (no
window)”, “Start I2P (restartable)” and “I2P router console”. In order to complete CT-2
and regarding the manual, the instruction to the user is that she should simply click on
the “Run I2P” button which will bring up the router console with further instructions.
Because there is no button or shortcut named “Run I12P” (see above which shortcuts
have been created) the user does not know how to proceed (G1, G2). It also cannot be
assumed that a novice user knows what a router console is, so G6 is disregarded. Be-
cause of the router console mentioned in the instruction, a user might execute the “I12P
router console” shortcut. On the test-system the Firefox Browser is opened with the

3http://check.torproject.org/

Anonymity Techniques — Usability Tests of Major Anonymity Networks 53

URL http://localhost:7657/index. jsp which displays a connection fail error
(G4).

Because no further documentation is available, the “Start I2P (no window)” shortcut
is chosen and, as a result, the Internet Explorer (and not the default browser Fire-
fox) opens with the URL http://localhost:7657/index. jsp. This page states:
“Congratulations on getting I2P installed”, fulfilling G3.

The opened page is very complex. On the left side there are several parameters dis-
played, such as Peers, Bandwidth, Tunnels and Congestion. On the top there is a nav-
igation bar where links to Susimail, SusiDNS, I2PSnark, etc...are placed. The use of
technical terms and applications the user does not know or even might not be inter-
ested in violates G6. G7 is also disregarded because there are so many options available
that a user cannot use it comfortably.

The content area welcomes the user with further instructions on how to proceed. This
fits G3 and CT-1 is completed. The instructions may fulfil G1 and G2 in order to per-
form CT-2 but the whole presentation of that page is too complex and uses too much
technical language (G6). The instructions in detail are adjust bandwidth settings and
open up port 8887 on the firewall and further enable inbound TCP on the linked con-
figuration page. This is clearly not addressed to novice users (G6) and may result in
errors (G5). After the tasks are completed the user gets no feedback if she has reached
CT-2 (G3).

In contrast to the download website there are more configuration hints on the local
page presented when starting I2P. These are separately from those mentioned above.
The effect is, that it looks confusing and does not support the user in achieving CT-2,
so G1 and G2 are disobeyed. Amongst other hints one finds “browse the web” which
states that one should “simply” set the browsers proxy to use an HTTP “outproxy” of
I2P. This description is not suited for a novice user because it uses technical language
(G6) and the user might not know how to complete this task (G2). The same circum-
stance was examined for Tor in [7].

Because there is no application offered to check whether the traffic is being anonymised
(CT-3) a website has to be chosen which displays the actual IP-address.

CT-4 can be performed by clicking a “shutdown” link in the user interface. But as this
just turns off I2P, the user additionally has to reverse the configuration in the Browser,
too. Due to the fact that the initial configuration step violated G2 and G6, it is clear that
the reverse action does the same.

3.3 Jap/JonDo

A download button to obtain JonDo is placed clearly visible on the left-hand side, so
the user is aware of the next steps she has to perform (G1 and G2). With clicking
on it, one can choose between JonDo versions for Windows, Linux and MacOS X. By
choosing the Windows version, the user is taken to another page where she can choose
between the JonDo desktop installation or the portable version. The downloadable file
is named japsetup.exe. The installation starts with a dialogue where the compo-
nents to be installed can be chosen. Namely, these are Jap, Swing and Java 1.3; Jap
is preselected. The fact that the name Jap instead of JonDo is presented five times
in this dialogue could irritate a user and is thus conflicting with G6 because the user

54 Jens Schomburg

does not necessarily know that Jap is a different name for the same application. Indi-
rectly it might also violate G2. It would be more comprehensible if one name would
be used continuously. After installing the application, a wizard starts up and prompts
to configure Jap/JonDo in every browser. A list of different browsers is given. It is
explained how to use the Jap/JonDo proxy settings for each of these browsers. This is
done in a non-technical language (G6) which meets G2 because it is a straight forward
description of the single steps. The next step is to check if a warning is displayed when
Jap/JonDo is switched off and tried to open a website. The expected warning comes
and the user can proceed with the next step of the configurating.

The next dialogue in the wizard is a manual to deactivate Java, JavaScript, ActiveX,
Flash and others in several browsers. Subsequently, a dialogue with the option to run
JonDo in either a simple or extended view is presented. After that, a link to the JonDo
FAQ and ultimately a confirmation screen that Jap/JonDo is successfully configured is
shown. From this last dialogue the user knows that CT-2 is achieved (meeting G3).
The step-by-step wizard is a good way to prevent users from making errors in config-
uring JonDo(G4 and G5) and is deemed understandable for novice users (G6). It also
can be restarted from the JonDo Application and thereby follows G4.

On the website an anonymity test is available * which shows diverse information trans-
mitted by the visiting system (G3 for CT-3).

To achieve CT-4 the user can click the “anonymity off” switch. A message that JonDo
does not support any protection further on is displayed. This procedure fits to G1, G2
and G3.

3.4 Mixmaster/ Quicksilver

This research yielded that it is impossible for a novice user to install Mixmaster cor-
rectly. There is no manual available and the installer files have to be compiled by the
user. Because this is seen as unacceptable for novice users, the research on this imple-
mentation is aborted at this point. Alternatively, the client implementation Quicksil-
ver [6] is chosen for further tests. The website comes in a very simple style without
graphics etc. It is written in non technical language (G6). There is also a download
link, together with the hint to read a welcome.txt for more information, which meets
G2.

When the downloaded file is executed the user gets to a screen where she is requested
to enter an e-mail address and an SMTP Host. Additionally there is a text saying that
an actual email address and mail server from which the User normally sends messages
is needed in order to create a default message and a USENET article. Although there
are examples and a text given this is not comprehensible for a User and thus violates
G6. On the basis of the given examples the user cannot determine how to complete
this step (G2)

The last dialogue before completing the wizard-style installation is an overview of the
configuration options chosen by the user. An affirmation that the installation is com-
plete is shown and the user knows that she completed CT-1 and G3 is fulfilled.

When starting Quicksilver a prompt comes up and informs the user that Mixmaster

“https://www.jondos.de/de/anontest

Anonymity Techniques — Usability Tests of Major Anonymity Networks 55

is not installed but needed to send encrypted messages. By using a non technical lan-
guage (G6) and providing a button “Get Mixmaster” the User can comprehend what
she has to do next (G2). By choosing the button “Get Mixmaster” the “QuickSilver
Update Express” is started. It asks the user to pick an FTP site from a drop-down list.
It can be expected that a novice user does not know what ftp and a proxy is, thus it
marks a violation against G6. By selecting the default site the program retrieves a list
of available updates, including Mixmaster (Mix29b39.zip). For a novice user it might
be unknowable which file to choose and what to do so G2 and G6 are violated.

The file is downloaded and afterwards the Mixmaster setup can be run out of the
QuickSilver update wizard. The Mixmaster setup is a wizard too. G6 is violated by
using technical terms like “computer’s path statement” and mentioning “mix.cfg”,
“mixlib.dll” and “libeay32.dll” without explanation. In the next dialogue the user is
requested to write her name with the mouse, for the purpose to gather some random
data to initialize the Mix random pool. When proceeding, the Mixmaster setup is com-
pleted which is then shown by a confirmation screen (G3).

The QuickSilver interface opens and it seems to be ready to use. Because the interface is
new to a novice user and the function is not evident, G7 is violated. In the help-system
there is a Quickstart section which is very long and therefore does not deserve the
name “Quick”. The chapter “I-8 Anonymous Messages” describes how to use Quick-
Silver in order to send anonymous messages. It explains the interface “New Message”.
The dialogue “New Message” is basically a text field with predefined values and the
user can edit or add some parameters on her own. This design is not supportive to
achieve CT-2° because it is not as intuitive to handle as usual and does not prevent the
user from making erroneous inputs (G7 and G5)

After composing a test message and clicking the “Send” button a dialogue appears
that says there are Mixmaster Remailer Documents missing. So CT-2 can be seen as
unfulfilled which was unnoticeable for the user (G1). There is a “Get documents” but-
ton presented to lead the user through this configuration step (G2). By choosing this
button a dialogue with several possible options is presented. Here a user can specify
URLs to find certain files. It is linked to a help topic for a brief explanation which files
the user needs so it meets G2. After reading the Help, executing the instructions (check
mlist.txt and rlist.txt) and clicking update, the application fetches new remailers and
keys. This whole procedure is complicated and intransparent for a novice user who
has not read the complete manual.

Afterwards, it is tried again to send a message, but the process aborts with the error
message “No reliable remailers!”. After searching the internet for new sources of re-
mailer stats and keys, they are found. This practice is also not practicable for a novice
user and violates G2 and G6. The whole configuration process is definitely too complex
for a novice user as it violates G1, G2 and G6 several times. The interface cannot be
handled very comfortably which is also a drawback. It is dispensable to test whether
CT-4 is achieved because there is no need to disable Quicksilver.

°CT-2 in this context means that the user should be able to configure the application the way that
anonymous e-mail can be sent.

56 Jens Schomburg

3.5 Summary of the installation and configuration test

The amount of guideline violations on every Core Task during the cognitive walk-
through are summed up and displayed in table 1. It is visible that all of the tested
implementations have flaws at the installation (CT-1). While there are less flaws at Tor
and JonDo, I2P and Quicksilver have more and thus are more difficult to install for
novice users. The configuration (CT-2) of I12P and Quicksilver is very difficult and as a
result the chance that novice loose interest at that point is seen as probable. In contrast
Tor and JonDo are very easy to configure. Core task three and four are achievable for
novice users with the three low latency network implementations as there are no (Tor,
JonDo) or just a few guideline violations (I2P) found. The latter mentioned core tasks
are not applicable on Quicksilver.

Table 1: guideline violations while trying to achieve a core task

Anonymity CT-1 CI-2 CI-3 CT4
network

Tor 3 2 0 0
2P 5 9 1 2
Jap/JonDo 3 0 0 0
Mixmaster nr nr nr nr
Quicksilver 6 9 nm nm

nr = core task not reachable; nm = metric not measurable

4 Comparison regarding subjective security effect

The following section consist of a subjective opinion of the security provided by the
tested implementations. The subjectivity aspect is crucial as there is no unified mea-
surement of anonymity yet and users typically rate their security by subjective feelings
instead of consulting hard facts. A certain faith in software is necessary because it is
nearly impossible for most users to evaluate the entire functionality of the product.

At first, the different websites are considered because they are the first contact point for
many users of an anonymity networks. The Tor project web presentation [1] inspires
confidence, as it is clearly structured and written in a non-technical language. On the
one hand the first good impression may be reduced by reading the part about possible
attacks on the Tor network but on the other hand it may increase the trust in the de-
velopers for being honest. The same applies for the I12P website [2]. On the Jap/JonDo
homepage [3] instead, the risks are not described that clearly. It is rated negatively that
many technical terms are used on the I2P website. Also, some of the graphics do not
make a professional impression®.

The websites of Mixmaster and Quicksilver are designed in a sparse look as it is found
often in the open source community. This design is not practical to gain novice users.

®They are presented in a comic like look.

Anonymity Techniques — Usability Tests of Major Anonymity Networks 57

The next facet that shall be discussed are the persons who develop the software or run
the service. The Tor, Mixmaster and Jap/JonDo developers are known or can at least
be linked to an identity unlike the I2P developers. The revelation of the developers
names is seen as a benefit because it supports trust in a project. A special case is JonDo
as there is a company (jondos) involved in selling access to the premium services of the
network and paying Mix operators for relaying traffic.

The applications themselves also differ in several ways: The Tor-Bundle is easy to in-
stall and configure with a few trivia. It gives the user a feeling of control because the
status of the application is visible at most times. This is enhanced by the Jap/JonDo
client since more information is presented (amount of Users, “Anonymity-meter”, ac-
tivity). In contrast to Tor and Jap/JonDo stands I2P because the user is overstrained
with all the possible configuration options. This reduces the trust in the application be-
cause a user cannot handle and control it intuitively. The Quicksilver application has
deficits here as well even though the control aspect is different because it just handles
e-mails instead of streams or packets. It is seen critically that one has to entrust the
account of the usual mail-server to the application even though one could open up a
free-mail account just for this purpose.

Another important fact when it comes to trust in software is the amount of academic
research work. It supports the user in trusting an anonymity software if she knows
that, through a survey flaws might be identified and, in consequence, be corrected.
This, again is a deficit of I2P as there is not much academic coverage yet.

5 Conclusion

The remaining question is that how much effort one can expect from the user to gain
knowledge about anonymisation and the examined implementations of the different
anonymity networks. It is more difficult to install and use I2P and Mixmaster/Quicksilver
than Tor or JonDo. The latter require a shorter period of vocational adjustment. On
every of the examined implementations, flaws can be fixed so that they are better to
handle for novice users.

References

[1] Tor 0.2.0.31. http://www.torproject.org.
[2] I2p 0.6.4. http://www.12p2.de.
[3] Jondos. http://www. jondos.de.
[4] An.on. http://anon.inf.tu-dresden.de.

[5] Mixmaster. http://mixmaster.sourceforge.net/.

[6] Quicksilver. http://www.quicksilvermail .net/.

58 Jens Schomburg

[7] Jeremy Clark, P. C. van Oorschot, and Carlisle Adams. Usability of anonymous
web browsing: an examination of Tor interfaces and deployability. In Proceedings
of the 3rd Symposium on Usable Privacy and Security (SOUPS '07), pages 41-51, New
York, NY, USA, July 2007. ACM.

[8] George Danezis and Claudia Diaz. A survey of anonymous communication chan-
nels. Technical Report MSR-TR-2008-35, Microsoft Research, January 2008.

[9] Claudia Diaz, Len Sassaman, and Evelyne Dewitte. Comparison between two
practical mix designs. In Proceedings of ESORICS 2004, LNCS, France, September
2004.

[10] Lexi Pimenidis. Holistic Confidentiality in Open Networks. PhD thesis, University
RWTH Aachen, 2009.

[11] Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0. In 8th USENIX Security Symposium, 1999.

Peer Profiling and Selection in the I2P
Anonymous Network

zzz, Lars Schimmer

The I2P Project
http://www.i2p2.de/
zzz@i2pmail.org
echelon@i2pmail.org

Abstract

I2P is an anonymous communication network that routes data through tunnels.
It selects subsets of peers for tunnels using peer profiling mechanisms, including
opportunistic measurement of per-tunnel bandwidth and the number of accepted
tunnels. The profiling and selection system was implemented in early 2004 and
its effectiveness has been conclusively demonstrated. It optimizes bandwidth
while maintaining the anonymity of its clients. In this paper we document I2P's
peer profiling and selection algorithms, discuss their strengths and weaknesses
and describe directions for future work. We hope that it will be useful to guide
improvements in I2P and other anonymous networks with similar features.

1 I2P Overview

I2P is an anonymous overlay network based on unidirectional encrypted tunnels.
The project evolved from the Invisible Internet Project (IIP), which was a specialized
IRC server transmitting data through a mix network. The project was formed to
support the efforts of those trying to build a more free society by offering them an
uncensorable, anonymous, and secure communication system able to operate
successfully in arbitrarily hostile environments [Jr03].

Starting from a low-latency transport protocol for The Freenet Project, it grew into an
independent project. I2P is primarily public domain software, but also includes code
under GPL, BSD, MIT, and Apache licenses. The project is undergoing rapid
development, with seven releases in 2008. The I2P software suite consists of the core
router and several software packages (web server, BitTorrent clients etc.).

The routing method is called garlic routing. It is similar to the onion routing used by
the Tor project [Tor] in that it transmits data through multiple peers, thus concealing
the true IP address of the sender from the recipient and vice versa. Garlic routing
allows multiple messages or cloves inside a single container. I2P employs a VPN-like
approach that is designed primarily for communication within the network (hidden
services in Tor terms). In I12P, only a few outproxies (exit nodes in Tor terms) operate
as gateways to the standard Internet.

Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1), pp. 59-70, 2009

60 zzz, Lars Schimmer

At the time of writing the I2P network consists of approximately 830 active peers.
This number varies over time, as 50-100 new nodes join the network every day and
others leave. Usually on weekends the network peaks at 1000 active nodes and on
weekdays the minimum is about 700 active routers. The network has a stable base of
approximately 550 active clients or destinations. Only one HTTP outproxy is publicly
advertised and accessible (it is possible there may be private outproxies as well).
There is also an IRC inproxy (gateway from the standard Internet) for I2P
development discussion, and an email gateway. The current bandwidth used by all
peers is roughly 11 MByte/sec with peaks at 16 MByte/sec and the peers build ~40,000
tunnels to route this traffic. In the last 6 months the network doubled in terms of
running routers, bandwidth and tunnels. We project continued stable growth for the
network.

1.1 Tunnel Overview

I2P transmits its payload through tunnels. A tunnel is a unidirectional encrypted
connection through zero or more peers. Every router and destination has some
incoming and outgoing tunnels. Tunnels are created for each router and destination
upon initialization. Message transport may use one or more tunnels, and an
application-level TCP connection is not correlated with a particular tunnel. We
distinguish between exploratory and client tunnels.

1.2 Exploratory tunnels

Exploratory tunnels are generally low bandwidth, and are used by the router itself.
These tunnels are used to test other tunnels, send network database (netDb) queries,
and build client tunnels. The paragraph Peer Selection describes the process of
tunnel building in more detail.

1.3 Client tunnels

Client tunnels transmit the payload for protocols like HTTP, IRC and others through
I2P. These tunnels can be high bandwidth and reach up to 200 KByte/sec.

Each service in I2P has a destination as a representation of the location to reach the
service. Examples are servers like eepsites (the I2P internal webpages), monotone
server, IRC server or audio streaming servers, and the clients have a destination as a
return address, e.g. IRC clients, bittorrent clients, monotone clients or else. Servers
have stable destinations while clients destination are created new on every router
restart.

Each destination has an associated set of tunnels to transport the data. The
application and/or user can control the specifications of the tunnels:

e Length: The number of peers or hops in the tunnel; typically 2 or 3
e Length Variance: A range to be randomly added to the tunnel length at
creation; typically [0-1]

Peer Profiling and Selection in the I2P Anonymous Network 61

e Pool Quantity: The number of tunnels in the tunnel pool; messages are
distributed across tunnels in the pool

e Backup Tunnels: Additional tunnels may be specified in case the original
tunnels die unexpectedly

The route from a client to server is divided into two tunnels: the outgoing tunnel,
controlled by the client, and the incoming tunnel, controlled by the server. The
connection between these two tunnels is direct; the outbound endpoint of the outgoing
tunnel connects directly to the inbound gateway of the incoming tunnel. Tunnels
provide anonymity by separating the destination’s inbound gateway and outbound
endpoint from the destination’s router. By setting the length of his tunnels, every
participant may control his anonymity level. Longer tunnels provide more
anonymity at the cost of lower performance and reliability.

Each router selects the peers with which it builds the tunnel based on the profile of
its capabilities described below. It also determines the order of peers within a tunnel,
using the XOR distance of a peer’s router ID from a random key, to inhibit
predecessor attacks [Wr04, Wr08]. Also, two or more I2P peers within the same /16
subnet cannot be used within the same tunnel, to frustrate simple forms of collusion.

Each tunnel in I2P has a fixed lifetime of 10 minutes and will be discarded after this
time. This enhances anonymity by having all tunnels look the same, to reduce the
chance of correlation with a router or destination. A new tunnel will be created and
added to the pool before the existing one times out. Data will be sent on one or more
of the tunnels of the pool associated with the specific destination.

Peers can reject or drop tunnel build requests sent by other peers for a number of
reasons (overload, shutdown in progress, limit reached, out of sync). Even within the
lifetime of a tunnel these can be discarded due to overload or unexpected shutdown
of one of the peers in the tunnel. To detect tunnel failure, each tunnel is tested on a
periodic basis. The test sends a single 1 Kbyte message per minute, which adds a
small overhead to the router traffic that is inconsequential for all but the lowest-
bandwidth routers. Test messages are designed to verify tunnel connectivity and not
to test tunnel bandwidth.

The tunnels on a peer are sorted into different classes:

e Exploratory tunnels: Tunnels used by the router itself

e Client tunnels: the tunnel starts or ends in this peer, bound to a server or client
on the peer

e Participating tunnels: this peer is a member of one of the tunnels and the
participating tunnels come in from a peer and continue through to another
peer.

Three cases are possible: outbound endpoint of an outgoing tunnel, entrance or
"inbound gateway" of an incoming tunnel, and an inner peer of a participating
tunnel.

62 zzz, Lars Schimmer

1.4 Network Database Overview

The NetDB is a collection of information stored about each peer and destination. It
contains a RouterInfo structure for each peer and a LeaseSet (similar to the hidden
service descriptor in Tor) for each known destination. LeaseSets will not be described
here, for more information on this topic see the I2P website [I12P].

The RouterInfo is a small collection of all vital information describing a peer. The IP
address, port, peer ID, I2P stable version number, network version, transport
capabilities and some statistical data are included. The statistical data are for network
diagnostics and are not trusted by routers. Each peer is set by default to 48KBps
input and 24KBps output bandwidth with 90% share percentage (90% of maximum
bandwidth is allowed to be used up by participating tunnels).

Each peer is sorted into a bandwidth class based on the user-configured shared
bandwidth: these classes are named K, L, M, N and O. Limits are <=12 KBps for K, to
>=128 KBps for O. This classification is just for network diagnostics, except that peers
of class K are not used at all for routing participating tunnels. Statistics show only a
small number of K routers (96 % are class L-O), so almost all peers are configured to
route tunnels for others.

1.5 Tunnel Building

Each router in I2P selects a subset of peers for its tunnels. Ideally, the routers should
select the fastest peers available. A simple implementation would be to allocate
tunnels in proportion to the self-reported bandwidth values for each peer. This
allows a simple low-resource attack where malicious nodes can report a high
bandwidth so that a larger fraction of tunnels are routed through them [SB08]. As
such an attack can easily attract a large number of tunnels and thus compromise
anonymity [Ba07], I2P implements peer profiling.

2 Peer Profiling and Tiers

Peer profiling was proposed for the I2P network in December 2003 by jrandom
[Jr03a]. It was introduced in the 0.3 release in March 2004 [Jr04].

Peer selection within I2P is the process of selecting the path, or sequence of other
routers, for locally generated messages and their replies. This path is an ordered set
of peers in a tunnel. The router maintains a database of each peer's performance,
called the profile. The router uses that data to estimate the bandwidth of a peer, how
often a peer will accept tunnel build requests, and whether a peer seems to be
overloaded or otherwise unable to reliably perform. The profiling system includes
mechanisms similar to the "opportunistic bandwidth measurement algorithm"
proposed for Tor [SBO8]. It does not require "active bandwidth probing" or
generation of special-purpose traffic for measurement. Direct measurement, such as
transport layer latency or congestion, is not used as part of the profile as it can be

Peer Profiling and Selection in the I2P Anonymous Network 63

manipulated and associated with the measuring router, exposing the router to trivial
attacks.

The profile contains several statistics and is continuously updated. For each statistic,
averages, event counts, and maximums for several periods (for example 1 minute, 10
minute, 1 hour, and 24 hour) are available. Example statistics are: how long it takes
for the peer to reply to a network database query, how often a tunnel through the
peer fails, and how many new router references the peer sends. The profiles are also
stored persistently on disk, so the statistics are not reset at router initialization. Also,
the profile stores several timestamps, including the last time a peer was heard from,
the last time it accepted a tunnel request, and the last communication error.

Much of the profile data is unused in the current software. It remains a "reserve"
defense that can be easily used to enhance the router's resistance to theoretical or
actual attacks, such as denial-of-service attempts, selective packet drops, network
database (floodfill) disruption, and others. The profiles are a router’s unique
assessment of each peer’s capabilities, and are not distributed to other peers or
published, for this would easily compromise anonymity.

The profiles are periodically coalesced and sorted into tiers of peers that are used for
various functions, as described further below.

2.1 Speed

The speed calculation simply estimates how much data can be sent or received on a
single tunnel through the peer in a minute based on past performance (this may also
be termed bandwidth or capacity, but we use the I2P terminology here). Specifically,
it is the average of the bandwidth of the fastest three tunnels, measured over a one-
minute period, through that peer. Previous algorithms used a longer measurement
time and weighed recent data more heavily. Another previous calculation used total
(rather than per-tunnel) bandwidth, but it was decided that this method overrated
slow, high-capacity peers (that is, slow in bandwidth but high-capacity in number of
tunnels). Even earlier methods were much more complex. The current speed
calculation has remained unchanged since early 2006.

Only a router's locally generated and received traffic is used for these measurements
- transit or "participating” traffic is not used. As it is not known if the peer before or
after the router in a tunnel is a true participant or the originator or destination, that
data would not be valid. Also, this could be exploited to get a router to rank some
peer of their choosing as quite fast. Having a remote peer influence the rankings in
this way could be dangerous to anonymity.

2.2 Capacity

An estimate of peer tunnel capacity, defined as the number of successful tunnel builds
through the peer in a time period, is crucial to the smooth operation of an I2P router.
As tunnel building is expensive, it is important to rate peers based on their
willingness to accept tunnels. Peers may reject or drop tunnel requests for any

64 zzz, Lars Schimmer

number of reasons. Generally the rejection or drop is caused by a bandwidth limit
(from participating tunnels or locally generated traffic), a processing (CPU) limit
which manifests itself as large request processing delay, or an absolute limit on
participating tunnel count.

The capacity calculation simply estimates how many tunnels the peer would agree to
participate in over the next hour. The actual capacity rating, before adjustments (see
below), is as follows: Let r(t) be the successful builds per hour, over a certain time
period t:

R = 4*r(10m) + 3*r(30m) + 2*r(1h) + r(1d)

If there are no successful builds in a given time period, the value is zero. Build
requests are never sent for the sole purpose of constructing the rating. The rating also
includes a 'growth factor” that adds a small amount each time, so that builds through
new peers are periodically attempted.

2.3 Manual Adjustments and Unused Statistics

For both the speed and capacity metrics, bonuses may be used to manually adjust
preferences for individual peers.

There are several other statistics available in the profile that are not currently used
for peer selection. These include latency for client messages, tunnel build request
response time, communication error frequency, and network database lookup
success rate and response time. The potential for improving peer selection based on
these statistics is a topic for further research.

The router also maintains an "integration" metric reflecting the number of other peer
references received from that peer. The integration metric is used to qualify a peer as
a floodfill router (directory authority in Tor terms) but is not used for peer selection.

2.4 Capacity: Crime, Blame, and Punishment

Raw tunnel build capacity is not a sufficient measurement - it is essential to
decrement measured capacity as a form of "punishment" for bad behavior, because
tunnel build attempts are expensive, and malicious peers must be avoided. A tunnel
build request is about 4KB, and the reply is identically sized. Generation of the build
request also consumes significant CPU and entropy to create the cryptographic keys.
As an example of the factors that must be considered:

e A peer that accepts 10 out of 10 requests is better than one that accepts 10 out
of 100.

e A peer that explicitly rejects a request is better than one that drops it.

e A peer that accepts a request but later drops data through the tunnel should
be avoided.

Ideally, capacity should be decremented for build request rejections, build request
timeouts, and tunnel test failures. Unfortunately, a router does not know which of

Peer Profiling and Selection in the I2P Anonymous Network 65

the tunnel peers to blame when a request or tunnel test message is dropped. Tunnel
builds requests are handed off from peer to peer along the path, and since tunnels
are unidirectional, a tunnel cannot be tested in isolation. What should the router do
with such incomplete information?

e Naive solution: Do not blame any peer.

e Better solution: Blame each peer with equal weight.

e Best solution: Blame each peer, but use a weighted value if there is partial
information available on the probability of a particular peer’s fault.

The naive solution was used in I2P for many years. However in mid-2008, we
implemented the weighted blame system, as it became apparent that recognizing and
avoiding unreliable and unreachable peers is critically important.

As an example, assume a tunnel build request (4 outbound hops through peers A-B-
C-D) has expired. The reply was due back through the inbound exploratory tunnel (2
hops E-F). The following options are among the possibilities:

1. Any of the peers could be at fault, so blame no one.

2. Blame each of the 6 peers equally with weight 1/6.

3. Weight each tunnel equally, and distribute the blame equally in each tunnel,
so blame outbound peers A-D with weight 1/8, and blame inbound peers E-F
with weight 1/4.

4. Knowing that the usual failure point in I2P is an unreachable inbound
gateway! (E in this case), blame E with weight 1/2 and the other peers with
weight 1/10.

I2P now uses option 3 for build request timeouts, and option 4 for tunnel test failures
in most cases. The effectiveness of these changes has been demonstrated by
significant improvement in tunnel build success rates and network bandwidths in
the latter half of 2008. The system works because consistently “bad” peers are
discovered and avoided fairly quickly, while peers that are falsely blamed are
blamed with roughly equal frequency, which does not hurt their relative ranking.

Finally, we multiply the test failures by 4 to increase the punishment for agreeing to a
tunnel but then dropping data. The current calculation for capacity, r(t) for each time
t, is:

R(t) = accepts — rejects — weighted timeouts — 4*weighted failures + growth factor

1 Consider a test of previously built outbound tunnel A-B-C-D and inbound tunnel E-F build by router
X. Tunnel build requests follow the path of the tunnel itself, therefore the act of router X building
these tunnels establishes and verifies the transport connections X-A, A-B, B-C, C-D, E-F, and F-X. In
addition, due to the 10-minute tunnel lifetime, and transport idle timeouts that are generally longer
than that, those connections will probably remain up for the lifetime of the tunnel. The only
connection that is not necessarily established in advance is the connection between the outbound
endpoint (D) and the inbound gateway (E). Therefore, if a tunnel test fails, it is usually due to
configuration or firewall issues at the inbound gateway.

66 zzz, Lars Schimmer

2.5 Sorting Profiles Into Tiers

To review, exploratory tunnels are generally low-bandwidth, and are used for router
operations, including building and testing other tunnels. Client tunnels are used for
all user client and server traffic, including accessing internal I2P network
destinations or "hidden services" such as eepsites, connection to external gateways
(inproxies and outproxies) and other uses.

Every 30 seconds, all the profiles are sorted into three tiers:

e The Not Failing tier contains all peers with whom communication was
attempted in the last few hours, including the following two tiers. Typical size
is 300-500 peers.

e The High-Capacity tier includes peers with above average rating for accepting
tunnel build requests, and the following tier. Typical size is 10-30 peers.

e The Fast tier includes peers from the High-Capacity tier whose speed rating
(i.e. peak bandwidth per tunnel) is above average for all peers in the Not
Failing tier. Typical size is 8-15 peers.

Both the speed and capacity metrics are skewed, with a small number of high ratings
and a "long tail". By using the average and not the median, we select a small number
of peers for the top two tiers.

2.6 Peer Selection
Candidate peers for tunnel builds are selected as follows:

e C(lient tunnels are built from peers in the Fast tier.
e Exploratory tunnels are built from peers either in the Not Failing tier or the
High Capacity tier.

For exploratory tunnels, the tier selected is chosen on a per-build basis, using a
weighted random function. The proportion of builds using the High Capacity tier is

(client success rate — exploratory success rate) / client success rate

As exploratory build success declines, the router builds more tunnels from the high
capacity tier, to limit the amount of effort spent on the expensive tunnel build
request operation. Therefore the selection maintains a balance between minimizing
tunnel build requests and the need to explore peers.

It may seem inadvisable to use the Not Failing tier (generally the lowest-bandwidth,
lowest-capacity peers) for exploratory tunnels, since these tunnels are required to
function for a router to build client tunnels. However, failing exploratory tunnels are
recognized quickly, so this is not a significant limitation. Using all peers for
exploratory tunnels provides I2P a system of opportunistic bandwidth and capacity
measurement.

Peer Profiling and Selection in the I2P Anonymous Network 67

Peers are selected with equal weight within each tier. If a sufficient number of peers
for a tunnel are not found within a given tier, the peer selection moves on to the next-
lower tier.

3 Performance Evaluation and Further Work

As shown in available network statistics, the recent improvements to the I2P
profiling and peer selection system have significantly improved bandwidth and
other performance metrics [Stats]. The core profiling system, including the
"opportunistic bandwidth measurement algorithm" proposed in [SB08], has been in
place since early 2004.

I2P does not use claimed bandwidth, which eliminates a class of low-resource
attacks. While we have not included here experimental data demonstrating that the
selection system is effective, it is readily apparent to the authors that in a broad range
of experimental conditions, the members of the Fast and High Capacity tiers are
those peers with high claimed bandwidth (class O). In our opinion the current
bandwidth constraints within I2P are not caused by poor peer selection, but lie
elsewhere?. The basic peer selection method has been in place for five years, and has
been tuned only modestly in the last two years.

The algorithm is stable; the Fast and High Capacity tier members do not change
rapidly. When a router uses a peer for tunnels, it tends to increase that peer's speed
and capacity metric, thus keeping that peer in the High Capacity tier. This is
desirable for anonymity, as using a large or rapidly varying set of peers for tunnels
would increase vulnerability to predecessor attacks by increasing the odds that an
attacker will eventually be a participant in a tunnel [Wr04, Wr08].

The tier system reacts quickly to individual peer failure or overload, and to increased
local demand for bandwidth. The speed and capacity metrics are strongly weighted
for recent performance. When a peer starts to drop test messages, or fails to respond
to tunnel build requests, it will quickly be demoted out of the high-capacity pool. As
bandwidth demand increases, the speed metric for individual peers will rapidly
increase, and the fast tier will quickly become reorganized to include the newly
recognized fast peers.

The tier system tends to use the highest-bandwidth peers when the network is not
congested. As congestion increases, the total network traffic "spreads out" to lower-
capacity peers. From an overall network perspective, this is optimal as it maintains a
similar level of service for all routers.

The profiling system does not over-optimize. The router uses its own, normally
generated traffic for peer profiling. No high-bandwidth test messages are required or
used. When a router does not require high bandwidth or a high number of tunnels,

2 Lock contention, memory usage, issues in the internal TCP implementation (streaming library),
network database inefficiencies, protocol overhead, message fragmentation, message dropping
strategies, UDP transport issues, and others — some of which may be topics for future papers.

68 zzz, Lars Schimmer

the metrics for each peer are correspondingly lower. Therefore, even a low-
bandwidth peer may be classified as "fast" and used for tunnels. This tends to, at
least partially, spread low-bandwidth tunnels broadly across the network, and leaves
the high-capacity peers for high-speed traffic. However, even very-low-bandwidth
routers tend to accurately find a few fast peers and thus are well prepared when
higher bandwidth is demanded.

Also, there is no need for a complete global optimum. I2P routers know only a subset
of the active peers in the network, generally 20% to 80%. Through exploratory tunnel
building and other peer discovery mechanisms?, routers have no difficulty finding a
sufficient portion of peers, and preventing network partitioning. As the I2P network
grows the percentage of peers known to each router will decline as we implement
additional mechanisms to limit memory usage, TCP and UDP connections, and other
resources in the router. This poses no threat to the profiling system.

The profiling system is persistent across restarts, and maintains measurements for
the last 24 hours. This allows a recently started router to quickly re-integrate to the
network, whether the router was just restarted or has been down for some time.

The network performance is sensitive to adjustments of the parameters, weighting,
and calculations. It is difficult to test and debug in a distributed network, and may be
impossible to fully optimize. The I2P router contains a framework for local network
simulation and testing; however, we have not used this framework for profiling and
selection testing. As described above, the routers include bandwidth and tunnel
build success statistics in the network database entry they publish to the floodfill
routers. While this information is not trusted or used in the router, it is gathered by
the stats.i2p website [Stats]. On that website, several network performance graphs
are presented, and the I2P developers rely on this facility to monitor the network and
judge the effectiveness of software changes in each release.

The basic measurements have been greatly simplified in the process of development.
The speed calculation, for example, was at one time over 400 lines of code, and it is
now only a few lines.

The punishment for bad behavior keeps the network running well, but also is an area
for further research. How heavily a router punishes determines how fast the load
spreads out across the network as the load increases, and how quickly an overloaded
peer is avoided. The implementation contains an implicit estimate of the cost of a
tunnel build request, as it rates the relative performance of a rejected requests and a
dropped request. It also weighs the costs of an accepted request vs. a request not
made at all. One possibility is to establish a baseline of a peer that has never been
asked to participate in a tunnel, then consider percentage (or absolute number) of

3 A newly installed router downloads RouterInfo structures out-of-network through a process called
reseeding. A router accepting tunnel build requests learns about the previous and next peers in the
tunnel. A router acting as an outbound endpoint learns about the inbound gateway when it must
route a message to that gateway, and vice versa. A router also periodically queries the floodfill peers
for a random key, and the reply will contain routers close to that key, a process called exploration.

Peer Profiling and Selection in the I2P Anonymous Network 69

request rejections, dropped requests, and test failures is required to drop the capacity
rating below the baseline.

If peers are punished too heavily, the network will tend to congestion collapse as
most peers are driven to negative capacity ratings, tunnel load spreads quickly
throughout the network, and routers attempt to route tunnels through very-low-
capacity peers. If peers are punished too lightly, routers will be slow to react to
overloaded peers, and maintain the same high capacity peers for too long by
accepting poor performance from a peer even when better peers may be available.

We recommend that those wishing to implement a profiling and selection system
start with relatively simple algorithms, and add complexity later if necessary. I12P’s
development has sometimes taken the reverse path; for example, I2P's speed
calculation used to be several pages of code, now it is quite simple.

The evaluation of a distributed anonymous network’s performance is difficult but
not impossible. A more formal measurement of I2P’s peer selection algorithms, either
on the real network, an isolated test network, or simulation, would be a valuable
extension to the analysis in this paper.

4 Conclusions

I2P routers accurately discover fast peers for tunnel routing without trusting claimed
bandwidth or generating large amounts of traffic for testing. When a router requires
little bandwidth, the precision of its peer selection is unimportant. When the router
does require more bandwidth, the selection will be correspondingly better. Even
very-low-bandwidth routers tend to accurately find fast peers and thus are well
prepared when higher bandwidth is demanded.

To use the terms of [SB08], I2P's peer profiling and selection system is an
opportunistic bandwidth measurement algorithm that is sensitive to network load
and client demand. It does not use self-reported values. However it does not provide
a "tunable" mechanism for users to trade off anonymity and performance. I2P
provides alternate method (tunnel length configuration) for the user to make that
adjustment. Not only is active bandwidth probing (i.e. generating large amounts of
special-purpose data for testing is not practical, as [SB08] states, it is not necessary. In
addition to the bandwidth measurements proposed in [SB08], I2P measures tunnel
build acceptance rate, with adjustments for various bad behavior by peers. 12P's
profiling and selection system has been in continuous use for approximately five
years.

While the system works well, several improvements are possible. The authors will
continue to research, evaluate, and tune I2P's peer profiling and selection system in
the coming months.

70 zzz, Lars Schimmer

References

[Ba07] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker: Low-resource routing
attacks against anonymous systems, Proceedings of the 2007 Workshop on Privacy in the
Electronic Society (WPES), 2007.

[I2P] This paper includes material from the I2P website http://www.i2p2.de/ by jrandom and
others.

[IP] http://invisibleip.sourceforge.net/iip/, http://en.wikipedia.org/wiki/Invisible IRC Project

[Jr03] jrandom: Invisible Internet Project (I2P) Project Overview, August 28, 2003
http://www.i2p2.de/ static/pdf/i2p philosophy.pdf

[Jr03a] jrandom: I2P Development Meeting 68, December 9, 2003 http://www.i2p2.de/meeting68

[Jr04] jrandom: I2P Development Meeting 82, March 23, 2004 http://www.i2p2.de/meeting82

[SBO8] Snader, R.; Borisov, N.: A Tune-up for Tor: Improving Security and Performance in the Tor
Network, Proceedings of the Network and Distributed Security Symposium - NDSS '08,
February 2008.

[Stats] http://stats.i2p/ or http://stats.i2p.to/

[Tor] http://www.torproject.org/

[Wr04] Wright, M.; Adler, M.; Levine, B.N.; Shields, C.: The Predecessor Attack: An Analysis of a
Threat to Anonymous Communications. In ACM Transactions on Information and System
Security (TISSEC) 4(7), November 2004, pages 489-522.

[Wr08] Wright, M.; Adler, M.; Levine, B.N.; Shields, C.: Passive-Logging Attacks Against Anonymous

Communications Systems.

